Publication Cover
Drying Technology
An International Journal
Volume 35, 2017 - Issue 16
755
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Advances in biodrying technologies for converting organic wastes into solid fuel

, &
Pages 1950-1969 | Received 01 Dec 2016, Accepted 19 Apr 2017, Published online: 01 Aug 2017

References

  • Archer, E.; Baddeley, A.; Klein, A.; Schwager, J.; Whiting, K. Mechanical-Biological-Treatment: A Guide for Decision Makers-Processes, Policies and Markets, Annexe A Process Fundamentals. Juniper Consultancy Services Ltd: März, 2005.
  • Negoi, R.M.; Ragazzi, M.; Apostol, T.; Rada, E.C.; Marculescu, C. Bio-drying of romanian municipal solid waste: An analysis of its viability. UPB Scientific Bulletin, Series C 2009, 71(4), 193–204.
  • Psomopoulos, C.S. Residue derived fuels as an alternative fuel for the Hellenic power generation sector and their potential for emissions reduction. AIMS Energy 2014, 2, 321–341.
  • Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T. Production and quality assurance of solid recovered fuels using mechanical-biological treatment (MBT) of waste: A comprehensive assessment. Critical Reviews in Environmental Science and Technology 2010, 40(12), 979–1105.
  • Ragazzi, M.; Rada, E.C. RDF/SRF evolution and MSW bio-drying. WIT Transactions on Ecology and the Environment 2012, 163(6), 199–208.
  • Jewell, W.J.; Dondero, N.C.; Van Soest, P.J.; Cummings, R.T.; Vegara, W.W.; Linkenheil, R. High Temperature Stabilization and Moisture Removal from Animal Wastes for By-Product Recovery; Final Report for the Cooperative State Research Service, SEA/CR 616–15–168; USDA: Washington, DC, 1984.
  • Velis, C.A.; Longhurst, P.J.; Drew, G.H.; Smith, R.; Pollard, S.J.T. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresource Technology 2009, 100(11), 2747–2761.
  • Haug, R.T. The Practical Handbook of Composting Engineering; CRC Press: Boca Raton, FL, 1993.
  • Bernai, M.P.; Paredes, C.; Sanchez-Monedero, M.A.; Cegarra, J. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology 1998, 63(1), 91–99.
  • Goyal, S.; Dhull, S.K.; Kapoor, K.K. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology 2005, 96(14), 1584–1591.
  • Navaee-Ardeh, S.; Bertrand, F.; Stuart, P.R. Emerging biodrying technology for the drying of pulp and paper mixed sludges. Drying Technology 2006, 24(7), 863–878.
  • Zawadzka, A.; Krzystek, L.; Stolarek, P.; Ledakowicz, S. Biodrying of organic fraction of municipal solid wastes. Drying Technology 2010, 28(10), 1220–1226.
  • Dominczyk, A.; Krzystek, L.; Ledakowicz, S. Biodrying of organic municipal wastes and residues from the pulp and paper industry. Drying Technology 2014, 32(11), 1297–1303.
  • Frei, K.M.; Stuart, P.R.; Cameron, D. Novel drying process using forced aeration through a porous biomass matrix. Drying Technology 2004, 22(5), 1191–1215.
  • Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology 2009, 100(22), 5444–5453.
  • Grammelis, P. Report on RDF/SRF utilization applications and technical specifications. Report, CERTH/ISFTA, 2011.
  • Navaee-Ardeh, S.; Bertrand, F.; Stuart, P.R. Development and experimental evaluation of a 1D distributed model of transport phenomena in a continuous biodrying process for pulp and paper mixed sludge. Drying Technology 2011, 29(2), 135–152.
  • Shao, L.M.; Ma, Z.H.; Zhang, H.; Zhang, D.Q.; He, P.J. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Management 2010, 30(7), 1165–1170.
  • Zhao, L.; Gu, W.M.; He, P.J.; Shao, L.M. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge. Water Research 2010, 44(20), 6144–6152.
  • Zhao, L.; Gu, W.M.; He, P.J.; Shao, L.M. Biodegradation potential of bulking agents used in sludge bio-drying and their contribution to bio-generated heat. Water Research 2011, 45(6), 2322–2330.
  • Zhao, L.; Gu, W.M.; Shao, L.M.; He, P.J. Sludge bio-drying process at low ambient temperature: effect of bulking agent particle size and controlled temperature. Drying Technology 2012, 30(10), 1037–1044.
  • Yang, B.Q.; Zhang, L.; Jahng, D.J. Importance of initial moisture content and bulking agent for biodrying sewage sludge. Drying Technology 2014, 32(2), 135–144.
  • Li, X.; Dai, X.; Yuan, S.; Li, N.; Liu, Z.; Jin, J. Thermal analysis and 454 pyrosequencing to evaluate the performance and mechanisms for deep stabilization and reduction of high-solid anaerobically digested sludge using biodrying process. Bioresource Technology 2015, 175, 245–253.
  • Cai, L.; Gao, D.; Hong, N. The effects of different mechanical turning regimes on heat changes and evaporation during sewage sludge biodrying. Drying Technology 2015, 33(10), 1151–1158.
  • Sugni, M.; Calcaterra, E.; Adani, F. Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresource Technology 2005, 96(12), 1331–1337.
  • Garg, A.; Smith, R.; Hill, D.; Simms, N.; Pollard, S. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications. Environmental Science & Technology 2007, 41(14), 4868–4874.
  • Rada, E.C.; Ragazzi, M.; Fiori, L.; Antolini, D. Bio-drying of grape marc and other biomass: a comparison. Water Science and Technology 2009, 60(4), 1065–1070.
  • Tambone, F.; Scaglia, B.; Scotti, S.; Adani, F. Effects of biodrying process on municipal solid waste properties. Bioresource Technology 2011, 102(16), 7443–7450.
  • Velis, C.; Wagland, S.; Longhurst, P.; Robson, B.; Sinfield, K.; Wise, S.; Pollard, S. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality. Environmental Science & Technology 2012, 46(3), 1923–1931.
  • Hernandez-Atonal, F.D.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. Combustion of refuse-derived fuel in a fluidized bed. Chemical Engineering Science 2007, 62(1), 627–635.
  • Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.; Simms, N.J.; Hill, D. Comparative evaluation of SRF and RDF co-combustion with coal in a fluidized bed combustor. In Proceedings of the Eleventh International Waste Management and Landfill Symposium, Cagliari, Italy, October 1–5, 2007; Paper 411.
  • Rada, E.C.; Ragazzi, M.; Panaitescu, V. MSW bio-drying: an alternative way for energy recovery optimization and landfilling minimization. UPB Scientific Bulletin, Series D: Mechanical Engineering 2009, 71(4), 113–120.
  • Velis, C.A.; Rotter, S.; Lasaridi, K. MBT-derived SRF: State-of-the-art in Europe. Will Quality Management Deliver? In Proceedings of the Third International Conference, Hellenic Solid Waste Management Association, Athens, Greece, October 30–31, 2009.
  • Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor. Waste Management 2011, 31(6), 1176–1183.
  • Rada, E.C.; Ragazzi, M.; Panaitescu, V.; Apostol, T. MSW bio-drying and bio-stabilization: an experimental comparison. In Proceedings of the International Conference: Towards integrated urban solid waste management system, November 2005, pp. 6–10.
  • Rada, E.C.; Ragazzi, M.; Itescu, V.P.; Apostol, T. Energy from waste: the role of bio-drying. University “Politehnica” of Bucharest Scientific Bulletin, Series C: Electrical Engineering 2005, 67(2), 69–76.
  • Velis, C.A.; Wagland, S.; Longhurst, P.; Robson, B.; Sinfield, K.; Wise, S.; Pollard, S. Solid recovered fuel: Materials flow analysis and fuel property development during the mechanical processing of biodried waste. Environmental Science & Technology 2013, 47(6), 2957–2965.
  • Di Lonardo, M.C.; Franzese, M.; Costa, G.; Gavasci, R.; Lombardi, F.The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications. Waste Management 2016, 47, 195–205.
  • Hamidian, A.; Sarshar, Z.; Stuart, P.R. Techno-economic analysis of continuous biodrying process in conjunction with gasification process at pulp and paper mills. Drying Technology 2016. doi: 10.1080/07373937.2016.1164182
  • Zhang, D.Q.; He, P.J.; Jin, T.F.; Shao, L.M. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation. Bioresource Technology 2008, 99(18), 8796–8802.
  • Tom, A.P.; Pawels, R.; Haridas, A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Management 2016, 49, 64–72.
  • Navaee-Ardeh, S.; Bertrand, F.; Stuart, P.R. Key variables analysis of a novel continuous biodrying process for drying mixed sludge. Bioresource Technology 2010, 101(10), 3379–3387.
  • Choi, H.L.; Richard, T.L.; Ahn, H.K. Composting high moisture materials: Biodrying poultry manure in a sequentially fed reactor. Compost Science & Utilization 2001, 9(4), 303–311.
  • Fugère, M.; Farand, P.; Chabot, R.; Stuart, P. Design and techno-economic analysis of a process for transforming pig manure into a value-added product. The Canadian Journal of Chemical Engineering 2007, 85(3), 360–368.
  • Jewell, W.J.; Cummings, R.J. Apple pomace energy and solids recovery. Journal of Food Science 1984, 49(2), 407–410.
  • Sen, R.; Annachhatre, A.P. Effect of air flow rate and residence time on biodrying of cassava peel waste. International Journal of Environmental Technology and Management 2015, 18(1), 9–29.
  • Ma, J.; Zhang, L.; Li, A. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation. Waste Management 2016, 56, 411–422.
  • Madigan, M.T.; Martinko, J.M.; Stahl, D.A.; Clark, D.P. Brock Biology of Microorganisms; Benjamin Cummings: San Francisco, 2012.
  • Miller, F.C. Matric water potential as an ecological determinant in compost, a substrate dense system. Microbial Ecology 1989, 18(1), 59–71.
  • Tsang, K.R.; Vesilind, P.A. Moisture distribution in sludges. Water Science and Technology 1990, 22(12), 135–142.
  • Luo, W.; Chen, T.B.; Zheng, G.D.; Gao, D.; Zhang, Y.A.; Gao, W. Effect of moisture adjustments on vertical temperature distribution during forced-aeration static-pile composting of sewage sludge. Resources, Conservation and Recycling 2008, 52(4), 635–642.
  • Chang, J.I., and Chen, Y.J. Effects of bulking agents on food waste composting. Bioresource Technology 2010, 101(15), 5917–5924.
  • Song, X.; Ma, J.; Gao, J.; Liu, Y.; Hao, Y.; Li, W.; Hu, R.; Li, A.; Zhang, L. Optimization of bio-drying of kitchen waste: inoculation, initial moisture content and bulking agents. Journal of Material Cycles and Waste Management 2015, 1–9.
  • Uao, P.H.; Vizcarra, A.T.; Chen, A.; Lo, K.V. Composting of separated solid swine manure. Journal of Environmental Science & Health Part A 1993, 28(9), 1889–1901.
  • Madejón, E.; Díaz, M.J.; López, R.; Cabrera, F. New approaches to establish optimum moisture content for compostable materials. Bioresource Technology 2002, 85(1), 73–78.
  • Richard, T.L.; Veeken, A.H.M.; Wilde, V.D.; Hamelers, H.V.M. (Bert). Air filled porosity and permeability relationships during solid-state fermentation. Biotechnology Progress 2004, 20(5), 1372–1381.
  • Ruggieri, L.; Gea, T.; Artola, A.; Sánchez, A. Air filled porosity measurements by air pycnometry in the composting process: A review and a correlation analysis. Bioresource Technology 2009, 100(10), 2655–2666.
  • Bishop, P.L.; Godfrey, C. Nitrogen transformation during sludge composting. Biocycle: Journal of Waste Recycling 1983, 24, 34–39.
  • Imbeah, M. Composting piggery waste: a review. Bioresource Technology 1998, 63(3), 197–203.
  • Richard, T.L.; Hamelers, H.V.M. (Bert); Veeken, A.; Silva, T. Moisture relationships in composting processes. Compost Science & Utilization 2002, 10(4), 286–302.
  • Cronjé, A.L.; Turner, C.; Williams, A.G.; Barker, A.J.; Guy, S. The respiration rate of composting pig manure. Compost Science and Utilization 2004, 12, 119–129.
  • Ahn, H.K.; Richard, T.L.; Glanville, T.D. Optimum moisture levels for biodegradation of mortality composting envelope materials. Waste Management 2008, 28(8), 1411–1416.
  • Colomer-Mendoza, F.J.; Herrera-Prats, L.; Robles-Martinez, F.; Gallardo-Izquierdo, A.; Piña-Guzman, A.B. Effect of airflow on biodrying of gardening wastes in reactors. Journal of Environmental Sciences 2013, 25(5), 865–872.
  • Huiliñir, C.; Villegas, M. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge. Water research 2015, 82, 118–128.
  • Adani, F.; Baido, D.; Calcaterra, E.; Genevini, P. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresource Technology 2002, 83(3), 173–179.
  • Adani, F.; Tambone, F.; Gotti, A. Biostabilization of municipal solid waste. Waste Management 2004, 24(8), 775–783.
  • Tambone, F.; Scaglia, B.; Scotti, S.; Adani, F. Effects of biodrying process on municipal solid waste properties. Bioresource Technology 2011, 102(16), 7443–7450.
  • Higgins, A.J.; Suhr, J.L.; Siddiqur Rahman, M.; Singley, M.E.; Rajput, V.S. Shredded rubber tires as a bulking agent in sewage sludge composting. Waste Management and Research 1986, 4(4), 367–386.
  • Iqbal, M.K.; Shafiq, T.; Ahmed, K. Characterization of bulking agents and its effects on physical properties of compost. Bioresource Technology 2010, 101(6), 1913–1919.
  • Molla, H.A.; Fakhru’l-Razi, A.; Alam, M.Z. Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique. Water Research 2004, 38(19), 4143–4152.
  • Banegas, V.; Moreno, J.L.; Garćıa, C.; León, G.; Hernández, T. Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Management 2007, 27(10), 1317–1327.
  • de Guardia, A.; Petiot, C.; Rogeau, D. Influence of aeration rate and biodegradability fractionation on composting kinetics. Waste Management 2008, 28(1), 73–84.
  • Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.V.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology 2009, 100(20), 4829–4835.
  • Wang, K.; Li, W.; Guo, J.; Zou, J.; Li, Y.; Zhang, L. Spatial distribution of dynamics characteristic in the intermittent aeration static composting of sewage sludge. Bioresource Technology 2011, 102(9), 5528–5532.
  • Cai, L.; Chen, T.B.; Gao, D.; Zheng, G.D.; Liu, H.T.; Pan, T.H. Influence of forced air volume on water evaporation during sewage sludge bio-drying. Water Research 2013, 47(13), 4767–4773.
  • Villegas, M.; Huiliñir, C. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates. Bioresource Technology 2014, 174, 33–41.
  • Zhou, H.B.; Chen, T.B.; Gao, D.; Zheng, G.D.; Chen, J.; Pan, T.H.; Liu, H.T.; Gu, R.Y. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting. Bioresource Technology 2014, 171, 452–460.
  • Zumdahl, S.S.; DeCoste, D.J. Introductory Chemistry: A Foundation; Cengage Learning: Hartford, 2014.
  • Shah, M.M. Improved method for calculating evaporation from indoor water pools. Energy and Buildings 2012, 49, 306–309.
  • Yang, B.Q.; Jahng, D.J. Optimization of food waste bioevaporation process using response surface methodology. Drying Technology 2015, 33(10), 1188–1198.
  • Ogunwande, G.A.; Osunade, J.A.; Adekalu, K.O.; Ogunjimi, L.A.O. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresource Technology 2008, 99(16), 7495–7503.
  • Kalamdhad, A.S.; Kazmi, A.A. Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere 2009, 74(10), 1327–1334.
  • Stanford, K.; Hao, X.; Xu, S.; McAllister, T.A.; Larney, F.; Leonard, J.J. Effects of age of cattle, turning technology and compost environment on disappearance of bone from mortality compost. Bioresource Technology 2009, 100(19), 4417–4422.
  • Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J. Effects of turning frequency on composting of spent pig-manure sawdust litter. Bioresource Technology 1997, 62(1), 37–42.
  • Léonard, A.; Meneses, E.; Le Trong, E.; Salmon, T. Influence of back mixing on the convective drying of residual sludges in a fixed bed. Water Research 2008, 42(10), 2671–2677.
  • Cai, L.; Chen, T.B.; Gao, D.; Yu, J. Bacterial communities and their association with the bio-drying of sewage sludge. Water Research 2016, 90, 44–51.
  • Cai, L.; Gao, D.; Hong, N. Measurement of moisture content using time domain reflectometry during the bio-drying of sewage sludge with high electrical conductivity. Drying Technology 2016. doi: 10.1080/07373937.2016.1162169
  • Rada, E.C.; Franzinelli, A.; Ragazzi, M.; Panaitescu, V.; Apostol, T. Modelling of PCDD/F release from MSW bio-drying. Chemosphere 2007, 68(9), 1669–1674.
  • Rada, E.C.; Franzinelli, A.; Taiss, M.; Ragazzi, M.; Panaitescu, V.; Apostol, T. Lower heating value dynamics during municipal solid waste bio-drying. Environmental Technology 2007, 28(4), 463–469.
  • Navaee-Ardeh, S.; Bertrand, F.; Stuart, P.R. A 2D distributed model of transport phenomena in a porous media biodrying reactor. Drying Technology 2011, 29(2), 153–162.
  • He, P.; Zhao, L.; Zheng, W.; Wu, D.; Shao, L. Energy balance of a biodrying process for organic wastes of high moisture content: a review. Drying Technology 2013, 31(2), 132–145.
  • Yang, B.Q.; Zhang, L.; Lee, Y.W.; Jahng, D.J. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater. Water Research 2013, 47(15), 5678–5689.
  • Mason, I.G. Predicting biodegradable volatile solids degradation profiles in the composting process. Waste Management 2009, 29(2), 559–569.
  • Maria, F.D.; Benavoli, M.; Zoppitelli, M. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction. Waste Management 2008, 28(5), 805–812.
  • Ahn, H.K.; Richard, T.L.; Choi, H.L. Mass and thermal balance during composting of a poultry manure-Wood shavings mixture at different aeration rates. Process Biochemistry 2007, 42(2), 215–223.
  • Huiliñir, C.; Villegas, M. Biodrying of pulp and paper secondary sludge: Kinetics of volatile solids biodegradation. Bioresource Technology 2014, 157, 206–213.
  • Huiliñir, C.; Pérez, J.; Olivares, D. A new model of batch biodrying of sewage sludge, Part 1: Model development and simulations. Drying Technology 2016. doi: 10.1080/07373937.2016.1212063
  • Huiliñir, C.; Pérez, J. A new model of batch biodrying of sewage sludge, Part 2: Model calibration and validation. Drying Technology 2016. doi: 10.1080/07373937.2016.1206124
  • Kaiser, J. Modelling composting as a microbial ecosystem: A simulation approach. Ecological Modelling 1996, 91(1), 25–37.
  • Mason, I.G.; Milke, M.W. Physical modelling of the composting environment: A review. Part 1: Reactor systems. Waste Management 2005, 25(5), 481–500.
  • Mason, I.G. Mathematical modelling of the composting process: A review. Waste Management 2006, 26(1), 3–21.
  • Rada, E.C.; Franzinelli, A.; Taiss, M.; Ragazzi, M.; Panaitescu, V.; Apostol, T. Lower heating value dynamics during municipal solid waste bio-drying. Environmental Technology 2007, 28(4), 463–469.
  • Rada, E.C.; Ragazzi, M.; Zardi, D.; Laiti, L.; Ferrari, A. PCDD/F environmental impact from municipal solid waste bio-drying plant. Chemosphere 2011, 84(3), 289–295.
  • Rada, E.C.; Venturi, M.; Ragazzi, M.; Apostol, T.; Stan, C.; Marculescu, C. Bio-drying role in changeable scenarios of Romanian MSW management. Waste and Biomass Valorization 2010, 1(2), 271–279.
  • Tita, G.; Viviani, G.; Sabella, D. Biostabilization and biodrying of municipal solid waste. In Proceedings of the Eleventh International Waste Management and Landfill Symposium, Cagliari, Sardinia, Italy, October 1–5, 2007; 1085–1086.
  • Ragazzi, M.; Rada, E.C.; Antolini, D. Material and energy recovery in integrated waste management systems: An innovative approach for the characterization of the gaseous emissions from residual MSW bio-drying. Waste Management 2011, 31(9), 2085–2091.
  • Ryckeboer, J.; Mergaert, J.; Vaes, K.; Klammer, S.; De Clercq, D.; Coosemans, J.; Swings, J. A survey of bacteria and fungi occurring during composting and self-heating processes. Annals of Microbiology 2003, 53(4), 349–410.
  • Nakasaki, K.; Sasaki, M.; Shoda, M.; Kubota, H. Change in microbial numbers during thermophilic composting of sewage sludge with reference to CO2 evolution rate. Applied and Environmental Microbiology 1985, 49(1), 37–41.
  • Nakasaki, K.; Sasaki, M.; Shoda, M.; Kubota, H. Effect of seeding during thermophilic composting of sewage sludge. Applied and Environmental Microbiology 1985, 49(3), 724–726.
  • Nakasaki, K.; Shoda, M.; Kubota, H. Effect of temperature on composting of sewage sludge. Applied and Environmental Microbiology 1985, 50(6), 1526–1530.
  • Sharara, M.A.; Sadaka, S.; Costello, T.A.; VanDevender, K. Influence of aeration rate on the physio-chemical characteristics of biodried dairy manure-wheat straw mixture. Applied Engineering in Agriculture 2012, 28(3), 407–415.
  • Benešová, L.; Pilnáček, V.; Závodská, A. MSW Biodrying in the Czech Republic. In Proceedings of 30th International Conference on Solid Waste Technology and Management, Philadelphia, PA USA, March 15–18, 2015.
  • Zhang, D.Q.; He, P.J.; Yu, L.Z.; Shao, L.M. Effect of inoculation time on the bio-drying performance of combined hydrolytic–aerobic process. Bioresource Technology 2009, 100(3), 1087–1093.
  • Liang, X.; Zhao, Y.; Hua, D.; Wang, B.; Zhang, J.; Zhang, X.; Gao, M. Optimization and process analysis of biodrying of low organic matter content municipal sludge. Journal of Biobased Materials and Bioenergy 2015, 9(1), 66–73.
  • Zhang, J.; Cai, X.; Qi, L.; Shao, C.; Lin, Y.; Zhang, J.; Wei, Y. Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying. Applied Microbiology and Biotechnology 2015, 99(17), 7321–7331.
  • Maeda, K.; Hanajima, D.; Morioka, R.; Osada, T. Characterization and spatial distribution of bacterial communities within passively aerated cattle manure composting piles. Bioresource Technology 2010, 101(24), 9631–9637.
  • Yang, B.Q.; Jahng, D.J. Repeated batch-fed bioevaporation of food waste using biofilm-developed sponge. Drying Technology 2016, 34(1), 76–90.
  • Youngquist, C.P.; Mitchell, S.M.; Cogger, C.G. Fate of antibiotics and antibiotic resistance during digestion and composting: a review. Journal of Environmental Quality 2016, 45, 537.
  • Zhang, J.; Chen, M.; Sui, Q.; Tong, J.; Jiang, C.; Lu, X.; Zhang, Y.; Wei, Y. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research 2016, 91, 339–349.
  • Zhang, J.; Sui, Q.; Tong, J.; Buhe, C.; Wang, R.; Chen, M.; Wei, Y. Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements. Water Research 2016, 106, 62–70.
  • AL-Chalabi, A.S.; Hawker, D. Response of vehicular lead to the presence of street dust in the atmospheric environment of major roads. Science of the Total Environment 1997, 206(2), 195–202.
  • Al-Khashman, O.A. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmospheric Environment 2004, 38(39), 6803–6812.
  • Zhang, D.Q.; Zhang, H.; Wu, C.L.; Shao, L.M.; He, P.J. Evolution of heavy metals in municipal solid waste during bio-drying and implications of their subsequent transfer during combustion. Waste Management 2011, 31(8), 1790–1796.
  • Hurka, M.; Malinowski, M. Assessment of the use of EWA bioreactor in the process of biodrying of undersize fraction manufactured from mixed municipal solid waste. Infrastruktura i Ekologia Terenów Wiejskich 2014, (IV/1).
  • Zhang, G.; Hai, J.; Ren, M.; Zhang, S.; Cheng, J.; Yang, Z. Emission, mass balance, and distribution characteristics of PCDD/Fs and heavy metals during co-combustion of sewage sludge and coal in power plants. Environmental Science & Technology 2013, 47(4), 2123–2130.
  • Hilber, T.; Thorwarth, H.; Stack-Lara, V.; Schneider, M.; Maier, J.; Scheffknecht, G. Fate of mercury and chlorine during SRF co-combustion. Fuel 2007, 86(12), 1935–1946.
  • Yao, J.; Li, W.B.; Kong, Q.N.; Wu, Y.Y.; He, R.; Shen, D.S. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel 2010, 89(3), 616–622.
  • Archer, E.; Baddeley, A.; Klein, A.; Schwager, J.; Whiting, K. Mechanical-Biological-Treatment: A Guide for Decision Makers-Processes, Policies and Markets, Annexe D Process Reviews, Juniper Consultancy Services Ltd: März, 2005.
  • Fehrenbach, H.; Gromke, U.; del Bufalo, N.; Hogg, D. Refuse derived fuel, current practice and perspectives. Final report, European Commission-DG Environment, Swindon, 2003.
  • Archer, E.; Baddeley, A.; Klein, A.; Schwager, J.; Whiting, K. Mechanical-Biological-Treatment: A Guide for Decision Makers-Processes, Policies and markets, The Summary Report. Juniper Consultancy Services Ltd, März, 2005.
  • Baldwin, R.L. Modeling Ruminant Digestion and Metabolism; Chapman & Hall: London, 1995.
  • Atkinson, B.; Mavituna, F. Biochemical Engineering and Biotechnology Handbook; Macmillan Publishers Ltd.: New York, USA, 1991.
  • Griffin, D.M. 1981. Water and microbial stress. In Advances in Microbial Ecology; Alexander, M. Ed.; Plenum Press: New York, 1981; 91–136.
  • Miller, F.C. Biodegradation of solid wastes by composting. In Biological Degradation of Wastes; Martin, A.M. Ed.; Elsevier Applied Science: London, 1991; 1–31.
  • Rada, E.C.; Ragazzi, M.; Apostol, T.; Panaitescu, V. Critical analysis of high moisture MSW biodrying: The Romanian case. In Proceedings of International Symposium MBT, Hanover, Germany, May 22–24, 2007; 440–551.
  • Kraft, D.L.; Orender, H.C. Considerations for using sludge as a fuel. Tappi Journal 1993, 76(3), 175–183.
  • Kudra, T.; Gawrzynski, Z.; Glaser, R.; Stanislawski, J.; Poirier, M. Drying of pulp and paper sludge in a pulsed fluid bed dryer. Drying Technology 2002, 20(4–5), 917–933.
  • Havukainen, J.; Zhan, M.; Dong, J.; Liikanen, M.; Deviatkin, I.; Li, X.; Horttanainen, M. Environmental impact assessment of municipal solid waste management incorporating mechanical treatment of waste and incineration in Hangzhou, China. Journal of Cleaner Production 2017, 141, 453–461.
  • Liu, H.T.; Wang, Y.W.; Liu, X.J.; Gao, D.; Zheng, G.D.; Lei, M.; Guo, G.H.; Zheng, H.; Kong, X.J. Reduction in greenhouse gas emissions from sludge bio-drying instead of heat drying combined with mono-incineration in China. Journal of the Air & Waste Management Association 2016. doi: 10.1080/10962247.2016.1227282
  • la Pagans, E.; Font, X.; Sánchez, A. Biofiltration for ammonia removal from composting exhaust gases. Chemical Engineering Journal 2005, 113(2), 105–110.
  • Pagans, E.; Font, X.; Sánchez, A. Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. Journal of Hazardous Materials 2006, 131(1), 179–186.
  • Rada, E.C.; Ragazzi, M.; Panaitescu, V.; Apostol, T. The role of bio-mechanical treatments of waste in the dioxin emission inventories. Chemosphere 2006, 62(3), 404–410.
  • Wani, A.H.; Branion, R.M.; Lau, A.K. Biofiltration: A promising and cost-effective control technology for Odors, VOCs and air toxics. Journal of Environmental Science & Health Part A 1997, 32(7), 2027–2055.
  • Leson, G.; Winer, A.M. Biofiltration: an innovative air pollution control technology for VOC emissions. Journal of the Air & Waste Management Association 1991, 41(8), 1045–1054.
  • Nicolai, R.E.; Janni, K.A. Biofilter media mixture ratio of wood chips and compost treating swine odors. Water Science and Technology 2001, 44(9), 261–267.
  • Deshusses, M.A. Biological waste air treatment in biofilters. Current opinion in Biotechnology 1997, 8(3), 335–339.
  • Yang, Y.; Allen, E.R. Biofiltration control of hydrogen sulfide 1. Design and operational parameters. Air & Waste 1994, 44(7), 863–868.
  • Smet, E.; Van Langenhove, H.; Maes, K. Abatement of high concentrated ammonia loaded waste gases in compost biofilters. Water, Air, and Soil Pollution 2000, 119(1–4), 177–190.
  • Ryu, H.W.; Cho, K.S.; Lee, T.H. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system. Bioresource Technology 2011, 102(7), 4654–4660.
  • Fricke, K.; Santen, H.; Wallmann, R. Comparison of selected aerobic and anaerobic procedures for MSW treatment. Waste Management 2005, 25(8), 799–810.
  • Zhang, H.; He, P.J.; Shao, L.M. Fate of heavy metals during municipal solid waste incineration in Shanghai. Journal of Hazardous Materials 2008, 156(1), 365–373.
  • Zhang, D.Q.; He, P.J.; Shao, L.M. Potential gases emissions from the combustion of municipal solid waste by bio-drying. Journal of Hazardous Materials 2009, 168(2), 1497–1503.
  • Zhang, D.Q.; He, P.J.; Shao, L.M. Effect of pH-neutralized leachate recirculation on a combined hydrolytic-aerobic bio-pretreatment for municipal solid waste. Bioresource Technology 2009, 100(17), 3848–3854.
  • Yuan, H.; Deng, L.; Chen, Y. Optimization of biodrying pretreatment of municipal solid waste and microbial fuel cell treatment of leachate. Biotechnology and Bioprocess Engineering 2014, 19(4), 668–675.
  • Kasinski, S.; Slota, M.; Markowski, M.; Kaminska, A. Municipal waste stabilization in a reactor with an integrated active and passive aeration system. Waste Management 2016, 50, 31–38.
  • Staley, B.F.; Xu, F.X.; Cowie, S.J.; Barlaz, M.A.; Hater, G.R. Release of trace organic compounds during the decomposition of municipal solid waste components. Environmental Science & Technology 2006, 40(19), 5984–5991.
  • Wang, X.M.; Wu, T. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments. Environmental Science & Technology 2008, 42(9), 3265–3270.
  • You, S.J.; Zhao, Q.L.; Jiang, J.Q.; Zhang, J.N.; Zhao, S.Q. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. Journal of Environmental Science and Health Part A 2006, 41(12), 2721–2734.
  • Zhang, J.N.; Zhao, Q.L.; You, S.J.; Jiang, J.Q.; Ren, N.Q. Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell. Water Science and Technology 2008, 57(7), 1017–1021.
  • Taha, M.P.M.; Drew, G.H.; Longhurst, P.J.; Smith, R.; Pollard, S.J. Bioaerosol releases from compost facilities: Evaluating passive and active source terms at a green waste facility for improved risk assessments. Atmospheric Environment 2006, 40(6), 1159–1169.
  • Swan, J.R.; Crook, B.; Gilbert, E.J. Microbial emissions from composting sites. In Environmental and Health Impact of Solid Waste Management Activities, Issues in Environmental Science and Technology, No. 18. The Royal Society of Chemistry, 2002; 73–101.
  • Wheeler, P.A.; Stewart, I.; Dumitrean, P.; Donovan, B. Health effects of composting: a study of three compost sites and review of past data. R & D Technical Report P1–315/TR. Environmental Agency, Bristol, UK, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.