Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 3
584
Views
34
CrossRef citations to date
0
Altmetric
ARTICLES

Lignocellulose biodegradation in the biodrying process of sewage sludge and sawdust

, , , &
Pages 316-324 | Received 30 Jan 2017, Accepted 01 May 2017, Published online: 04 Aug 2017

References

  • Ju, F.; Zhang, T. Bacterial Assembly and Temporal Dynamics in Activated Sludge of a Full-Scale Municipal Wastewater Treatment Plant. ISME J. 2015, 9, 683–695.
  • Navaee-Ardeh, S.; Bertrand, F.; Stuart, P. R. Development and Experimental Evaluation of a 1D Distributed Model of Transport Phenomena in a Continuous Biodrying Process for Pulp and Paper Mixed Sludge. Drying Technol. 2011, 29, 135–152.
  • Dominczyk, A.; Krzystek, L.; Ledakowicz, S. Biodrying of Organic Municipal Wastes and Residues from the Pulp and Paper Industry. Drying Technol. 2014, 32, 1297–1303.
  • Cai, L.; Gao, D.; Chen, T.; Liu, H.; Zheng, G.; Yang, Q. Moisture Variation Associated with Water Input and Evaporation During Sewage Sludge Bio-Drying. Biores. Technol. 2012, 117, 13–19.
  • Huiliñir, C.; Pérez, J. A New Model of Batch Biodrying of Sewage Sludge, Part 2: Model Calibration and Validation. Drying Technol. 2016, 35, 666–679. doi:10.1080/07373937.2016.1206124.
  • Rada, E. C.; Ragazzi, M. Selective Collection as a Pretreatment for Indirect Solid Recovered Fuel Generation. Waste Manage. 2014, 34, 291–297.
  • He, P. J.; Zhao, L.; Zheng, W.; Wu, D.; Shao, L. M. Energy Balance of a Biodrying Process for Organic Wastes of High Moisture Content: A Review. Drying Technol. 2013, 31, 132–145.
  • Zhang, J.; Sui, Q.; Tong, J.; Buhe, C.; Wang, R.; Chen, M.; Wei, Y. Sludge Bio-Drying: Effective to Reduce Both Antibiotic Resistance Genes and Mobile Genetic Elements. Water Res. 2016, 106, 62–70.
  • Scaglia, B.; Confalonieri, R.; D’Imporzano, G.; Adani, A. Estimating Biogasproduction of Biologically Treated Municipal Solid Waste. Biores. Technol. 2010, 101, 945–952.
  • Scaglia, B.; Salati, S.; Di Gregorio, A.; Carrera, A.; Tambone, F.; Adani, F. Short Mechanical Biological Treatment of Municipal Solid Waste Allows Landfill Impact Reduction Saving Waste Energy Content. Biores. Technol. 2013, 143, 131–138.
  • Winkler, M. K. H.; Bennenbroek, M. H.; Horstink, F. H.; Van Loosdrecht, M. C. M.; Van de Pol, G. J. The Biodrying Concept: An Innovative Technology Creating Energy from Sewage Sludge. Biores. Technol. 2013, 147, 124–129.
  • Zhao, L.; Gu, W.; Shao, L.; He, P. Sludge Bio-Drying Process at Low Ambient Temperature: Effect of Bulking Agent Particle Size and Controlled Temperature. Drying Technol. 2012, 30, 1037–1044.
  • Awasthi, M. K.; Pandey, A. K.; Bundela, P. S.; Khan, J. Co-composting of Organic Fraction of Municipal Solid Waste Mixed with Different Bulking Waste: Characterization of Physicochemical Parameters and Microbial Enzymatic Dynamic. Biores. Technol. 2015, 182, 200–207.
  • Wagland, S. T.; Godley, A. R.; Tyrrel, S. F. Investigation of the Application of an Enzyme-Based Biodegradability Test Method to a Municipal Solid Waste Biodrying Process. Waste Manage. 2011, 31, 1467–1471.
  • Cai, L.; Chen, T. B.; Gao, D.; Yu, J. Bacterial Communities and Their Association with the Bio-Drying of Sewage Sludge. Water Res. 2016, 90, 44–51.
  • Lv, Y.; Chen, Y.; Sun, S.; Hu, Y. Interaction Among Multiple Microorganisms and Effects of Nitrogen and Carbon Supplementations on Lignin Degradation. Biores. Technol. 2014, 155, 144–151.
  • Huang, D. L.; Zeng, G. M.; Feng, C. L.; Hu, S.; Lai, C.; Zhao, M. H.; Su, F.-F.; Tang, L.; Liu, H. L. Changes of Microbial Population Structure Related to Lignin Degradation During Lignocellulosic Waste Composting. Biores. Technol. 2010, 101, 4062–4067.
  • Feng, C.; Zeng, G.; Huang, D.; Hu, S.; Zhao, M.; Lai, C.; Huang, C.; Wei, Z.; Li, N. Effect of Ligninolytic Enzymes on Lignin Degradation and Carbon Utilization During Lignocellulosic Waste Composting. Process Biochem. 2011, 46, 1515–1520.
  • Sharma, R. K.; Arora, D. S. Production of Lignocellulolytic Enzymes and Enhancement of In Vitro Digestibility During Solid State Fermentation of Wheat Straw by Phlebia floridensis. Biores. Technol. 2010, 101, 9248–9253.
  • Zhang, J.; Lv, B.; Xing, M.; Yang, J. Tracking the Composition and Transformation of Humic and Fulvic Acids During Vermicomposting of Sewage Sludge by Elemental Analysis and Fluorescence Excitation-Emission Matrix. Waste Manage. 2015, 39, 111–118.
  • Zhou, Y.; Selvam, A.; Wong, J. W. Evaluation of Humic Substances During Co-Composting of Food Waste, Sawdust and Chinese Medicinal Herbal Residues. Biores. Technol. 2014, 168, 229–234.
  • Xiong, X.; Yan-Xia, L.; Ming, Y.; Feng-Song, Z.; Wei, L. Increase in Complexation Ability of Humic Acids with the Addition of Ligneous Bulking Agents During Sewage Sludge Composting. Biores. Technol. 2010, 101, 9650–9653.
  • MacCready, J. S.; Elbert, N. J.; Quinn, A. B.; Potter, B. A. An Assessment of Bacterial Populations in a Static Windrow Compost Pile. Compost Sci. Util. 2013, 21, 110–120.
  • Zhang, L.; Ma, H.; Zhang, H.; Xun, L.; Chen, G.; Wang, L. Thermomyces lanuginosus is the Dominant Fungus in Maize Straw Composts. Biores. Technol. 2015, 197, 266–275.
  • López-González, J. A.; del Carmen Vargas-García, M.; López, M. J.; Suárez-Estrella, F.; del Mar Jurado, M.; Moreno, J. Biodiversity and Succession of Mycobiota Associated to Agricultural Lignocellulosic Waste-Based Composting. Biores. Technol. 2015, 187, 305–313.
  • Jurado, M.; López, M. J.; Suárez-Estrella, F.; Vargas-García, M. C.; López-González, J. A.; Moreno, J. Exploiting Composting Biodiversity: Study of the Persistent and Biotechnologically Relevant Microorganisms from Lignocellulose-Based Composting. Biores. Technol. 2014, 162, 283–293.
  • Rynk, R. Monitoring Moisture in Composting Systems. Biocycle 2000, 41, 53–57.
  • U.S. Department of Agriculture and U.S. Composting Council. Test Methods for the Examination of Composting and Compost; Edaphos International: Houston, TX, 2001.
  • Yan, Z.; Song, Z.; Li, D.; Yuan, Y.; Liu, X.; Zheng, T. The Effects of Initial Substrate Concentration, C/N Ratio, and Temperature on Solid-State Anaerobic Digestion from Composting Rice Straw. Biores. Technol. 2015, 177, 266–273.
  • Zhang, Q.; Tian, M.; Tang, L.; Li, H.; Li, W.; Zhang, J.; Zhang, H.; Mao, Z. Exploration of the Key Microbes Involved in the Cellulolytic Activity of a Microbial Consortium by Serial Dilution. Biores. Technol. 2013, 132, 395–400.
  • Zhang, L.; Sun, X. Effects of Rhamnolipid and Initial Compost Particle Size on the Two-Stage Composting of Green Waste. Biores. Technol. 2014, 163, 112–122.
  • Zeng, G.; Yu, M.; Chen, Y.; Huang, D.; Zhang, J.; Huang, H.; Jiang, R.; Yu, Z. Effects of Inoculation with Phanerochaete chrysosporium at Various Time Points on Enzyme Activities During Agricultural Waste Composting. Biores. Technol. 2010, 101, 222–227.
  • Pan, T. H.; Chen, T. B.; Gao, D.; Zheng, G. D.; Chen, J.; Zhou, H. B. Comparison of Cassava Distillery Residues and Straw as Bulking Agents for Full-Scale Sewage Sludge Composting. Compost Sci. Util. 2016, 25, 1–12. doi:10.1080/1065657X.2015.1088420.
  • Kolde, R. pheatmap: Pretty Heatmaps. R Package Version 0.7.7, 2013. http://CRAN.R-project.org/package=pheatmap.
  • Haddadin, M. S.; Haddadin, J.; Arabiyat, O. I.; Hattar, B. Biological Conversion of Olive Pomace into Compost by Using Trichodermaharzianum and Phanerochaetechrysosporium. Biores. Technol. 2009, 100, 4773–4782.
  • Vergnoux, A.; Guiliano, M.; Le Dréau, Y.; Kister, J.; Dupuy, N.; Doumenq, P. Monitoring of the Evolution of an Industrial Compost and Prediction of Some Compost Properties by NIR Spectroscopy. Sci. Total Environ. 2009, 407, 2390–2403.
  • Cai, L.; Gao, D.; Nian, H. The Effects of Different Mechanical Turning Regimes on Heat Changes and Evaporation During Sewage Sludge Biodrying. Drying Technol. 2015, 33, 1151–1158.
  • Kang, J.; Zhang, Z.; Wang, J. J. Influence of Humic Substances on Bioavailability of Cu and Zn During Sewage Sludge Composting. Biores. Technol. 2011, 102, 8022–8026.
  • Yang, B.; Zhang, L.; Jahng, D. Importance of Initial Moisture Content and Bulking Agent for Biodrying Sewage Sludge. Drying Technol. 2014, 32, 135–144.
  • Raj, D.; Antil, R. S. Evaluation of Maturity and Stability Parameters of Composts Prepared from Agro-Industrial Wastes. Biores. Technol. 2011, 102, 2868–2873.
  • Albrecht, R.; Le Petit, J.; Calvert, V., Terrom, G.; Périssol, C. Changes in the Level of Alkaline and Acid Phosphatase Activities During Green Wastes and Sewage Sludge Co-Composting. Biores. Technol. 2010, 101, 228–233.
  • Wang, X.; Selvam, A.; Chan, M.; Wong, J. W. Nitrogen Conservation and Acidity Control During Food Wastes Composting Through Struvite Formation. Biores. Technol. 2013, 147, 17–22.
  • Macarena, J.; Maria, J. L.; Francisca, S. E.; Maria, C.; Vargas-Garcia, J. A.; Lopez-Gonzalez, J. M. Exploiting Composting Biodiversity: Study of the Persistent and Biotechnologically Relevant Microorganisms from Lignocellulose-Based Composting. Biores. Technol. 2014, 162, 283–293.
  • Luigi, P.; Maurizio, B.; Samuele, V.; Antonella, A.; Giorgio, G.; Luca, M.; Giovanna, C. V. Diversity, Ecological Role and Potential Biotechnological Applications of Marine Fungi Associated to the Seagrass Posidonia oceanica. New Biotechnol. 2013, 30, 685–694.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.