Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 5
478
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Application of 3D imaging and analysis techniques for the study of food plant cellular deformations during drying

ORCID Icon, , & ORCID Icon
Pages 509-522 | Received 24 Mar 2017, Accepted 08 Jun 2017, Published online: 09 Aug 2017

References

  • Jangam, S. V. An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Drying Technol. 2011, 29, 1343–1357.
  • Stefan, G.; Hosahalli, S. R.; Michele, M. Drying of Fruits, Vegetables, and Spices. In Amalendu Chakraverty; Arun S. Mujumdar; G. S. Vijaya Raghavan; Hosahalli S. Ramaswamy, Eds.; Handbook of Postharvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices; CRC Press: New York, USA; Basel, Switzerland, 2003; pp. 653–695.
  • Wong, E. H. Characterizing the Kinetics of Free and Bound Water Using a Non-Isothermal Sorption Technique. Drying Technol. 2017, 35, 46–54.
  • Kermani, A. M.; Khashehchi, M.; Kouravand, S.; Sadeghi, A. Effects of Intermittent Microwave Drying on Quality Characteristics of Pistachio Nuts. Drying Technol. 2016, 35, 1108–1116.
  • Vu, H. T.; Scarlett, C. J.; Vuong, Q. V. Effects of Drying Conditions on Physicochemical and Antioxidant Properties of Banana (Musa Cavendish) Peels. Drying Technol. 2016, 35, 1141–1151.
  • Würth, R.; Foerst, P.; Kulozik, U. Effects of Skim Milk Concentrate Dry Matter and Spray Drying Air Temperature on Formation of Capsules with Varying Particle Size and the Survival of Microbial Cultures in a Microcapsule Matrix. Drying Technol. 2017, 1–7.
  • Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates: New York, 2002.
  • Aguilera, J. M.; Stanley, D. W. Microstructural Principles of Food Processing and Engineering; Springer Science & Business Media, Gaithersburg, Maryland, USA, 1999.
  • Aguilera, J. M.; Chiralt, A.; Fito, P. Food Dehydration and Product Structure. Trends Food Sci. Technol. 2003, 14, 432–437.
  • Mayor, L.; Silva, M.; Sereno, A. Microstructural Changes During Drying of Apple Slices. Drying Technol. 2005, 23, 2261–2276.
  • Lozano, J. E.; Rotstein, E.; Urbicain, M. J. Total Porosity and Open-Pore Porosity in the Drying of Fruits. J. Food Sci. 1980, 45, 1403–1407.
  • Ramos, I. N.; Silva, C. L. M.; Sereno, A. M.; Aguilera, J. M. Quantification of Microstructural Changes During First Stage Air Drying of Grape Tissue. J. Food Eng. 2004, 62, 159–164.
  • Hills, B. P.; Remigereau, B. NMR Studies of Changes in Subcellular Water Compartmentation in Parenchyma Apple Tissue During Drying and Freezing. Int. J. Food Sci. Technol. 1997, 32, 51–61.
  • Lee, C. Y.; Salunkhe, D. K.; Nury, F. S. Some Chemical and Histological Changes in Dehydrated Apple. J. Sci. Food Agric. 1967, 18, 89–93.
  • Lewicki, P. P.; Pawlak, G. Effect of Drying on Microstructure of Plant Tissue. Drying Technol. 2003, 21, 657–683.
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319.
  • Bolin, H.; Huxsoll, C. Scanning Electron Microscope/Image Analyzer Determination of Dimensional Postharvest Changes in Fruit Cells. J. Food Sci. 1987, 52, 1649–1650.
  • Chaplain, M. A. The Strain Energy Function of an Ideal Plant Cell Wall. J. Theor. Biol. 1993, 163, 77–97.
  • Hettiaratchi, D.; O’Callaghan, J. Structural Mechanics of Plant Cells. J. Theor. Biol. 1978, 74, 235–257.
  • Lewicki, P.; Drzewucka-Bujak, J. Effect of Drying on Tissue Structure of Selected Fruits and Vegetables. Proceedings of the 11th International Drying Symposium, Halkidiki, Greece, August 19–22, 1998; pp. 1093–1099.
  • Crapiste, G. H.; Whitaker, S.; Rotstein, E. Drying of Cellular Material—I. A Mass Transfer Theory. Chem. Eng. Sci. 1988, 43, 2919–2928.
  • Zogzas, N.; Maroulis, Z.; Marinos-Kouris, D. Densities, Shrinkage and Porosity of Some Vegetables During Air Drying. Drying Technol. 1994, 12, 1653–1666.
  • Karathanos, V.; Villalobos, G.; Saravacos, G. Comparison of Two Methods of Estimation of the Effective Moisture Diffusivity from Drying Data. J. Food Sci. 1990, 55, 218–223.
  • Karunasena, H. C. P.; Senadeera, W.; Gu, Y. T.; Brown, R. J. A Coupled SPH-DEM Model for Micro-Scale Structural Deformations of Plant Cells During Drying. Appl. Math. Model. 2014, 38, 3781–3801.
  • Karunasena, H. C. P.; Gu, Y. T.; Brown, R. J.; Senadeera, W. Numerical Investigation of Plant Tissue Porosity and Its Influence on Cellular Level Shrinkage During Drying. Biosyst. Eng. 2015, 132, 71–87.
  • Rathnayaka Mudiyanselage, C. M.; Karunasena, H. C. P.; Gu, Y. T.; Guan, L.; Senadeera, W. Novel Trends in Numerical Modelling of Plant Food Tissues and Their Morphological Changes During Drying – A Review. J. Food Eng. 2017, 194, 24–39.
  • da Silva, W. P.; Rodrigues, A. F.; Silva, C. M. D. P. S. E.; Gomes, J. P. Numerical Approach to Describe Continuous and Intermittent Drying Including the Tempering Period: Kinetics and Spatial Distribution of Moisture. Drying Technol. 2017, 35, 272–280.
  • Xu, Z.; Pillai, K. M. Modeling Drying in Thin Porous Media After Coupling Pore-Level Drying Dynamics with External Flow Field. Drying Technol. 2017, 35, 785–801.
  • Xia, L.; Zhang, H.; Wang, B.; Yu, C.; Fan, X. Experimental and Numerical Analysis of Oil Shale Drying in Fluidized Bed. Drying Technol. 2017, 35, 802–814.
  • Karunasena, H. C. P.; Senadeera, W.; Brown, R. J.; Gu, Y. T. A Particle Based Model to Simulate Microscale Morphological Changes of Plant Tissues During Drying. Soft Matter 2014, 10, 5249–5268.
  • Rahman, M. M.; Joardder, M. U. H.; Khan, M. I. H.; Nghia, D. P.; Karim, M. A. Multi-Scale Model of Food Drying: Current Status and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 1–19.
  • Sobieski, W.; Dudda, W. Sensitivity Analysis as a Tool for Estimating Numerical Modeling Results. Drying Technol. 2014, 32, 145–155.
  • Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A. S. Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. Drying Technol. 2015, 33, 1397–1462.
  • Karunasena, H. C. P.; Senadeera, W.; Brown, R. J.; Gu, Y. T. Simulation of Plant Cell Shrinkage During Drying – A SPH-DEM Approach. Eng. Anal. Bound. Elements 2014, 44, 1–18.
  • Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D.; Ramon, H. A Particle-Based Model to Simulate the Micromechanics of Single-Plant Parenchyma Cells and Aggregates. Phys. Biol. 2010, 7, 026006.
  • Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Roose, D.; Ramon, H.Mechanisms of Soft Cellular Tissue Bruising. A Particle Based Simulation Approach. Soft Matter 2011, 7, 3580–3591.
  • Karunasena, H.; Hesami, P.; Senadeera, W.; Gu, Y.; Brown, R. J.; Oloyede, A. Scanning Electron Microscopic Study of Microstructure of Gala Apples During Hot Air Drying. Drying Technol. 2014, 32, 455–468.
  • Mudiyanselage, C. M. R.; Karunasena, H. C. P.; Gu Y. T.; Guan, L.; Banks, J.; Senadeera, W. A 3-D Meshfree Numerical Model to Analyze Cellular Scale Shrinkage of Different Categories of Fruits and Vegetables During Drying. Proceedings of the 7th International Conference on Computational Methods, Berkeley, USA, August 1–4, 2016; pp. 1070–1080.
  • O’Brien, T. P.; Feder, N.; McCully, M. E. Polychromatic Staining of Plant Cell Walls by Toluidine Blue O. Protoplasma 1964, 59, 368–373.
  • Sakai, W. S. Simple Method for Differential Staining of Paraffin Embedded Plant Material Using Toluidine Blue o. Stain Technol. 1973, 48, 247–249.
  • Ray, S. F. Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video, Electronic and Digital Imaging; Focal Press, Oxford, UK, 2002.
  • Brecko, J.; Mathys, A.; Dekoninck, W.; Leponce, M.; VandenSpiegel, D.; Semal, P. Focus Stacking: Comparing Commercial Top-End Set-Ups with a Semi-Automatic Low Budget Approach. A possible solution for mass digitization of type specimens. ZooKeys 2014, 464, 1.
  • Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Meth. 2012, 9, 671–675.
  • Abràmoff, M. D.; Magalhães, P. J.; Ram, S. J. Image Processing with ImageJ. Biophoton. Int. 2004, 11, 36–42.
  • Pante, M. C.; Muttart, M. V.; Keevil, T. L.; Blumenschine, R. J.; Njau, J. K.; Merritt, S. R. A New High-Resolution 3-D Quantitative Method for Identifying Bone Surface Modifications with Implications for the Early Stone Age Archaeological Record. J. Human Evol. 2017, 102, 1–11.
  • Digital Surf. Mountains® Surface Imaging & Metrology Software 2017. Retrieved from: http://www.digitalsurf.fr/en/mntkey.html (cited May 13, 2017).
  • Ho, A.; Jorns, B.; Mikellides, I. G.; Goebel, D. M.; Lopez Ortega, A. Wear Test Demonstration of a Technique to Mitigate Keeper Erosion in a High-Current lab 6 Hollow Cathode. Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, USA, July 25–27, 2016; p. 4836.
  • Asgharifar, M.; Mazar Atabaki, M.; Kovacevic, R. Characterization of the Surface Topography of Arc-Treated Aluminum Alloys by Fractal Geometry. Manuf. Lett. 2014, 2, 26–29.
  • Doymaz, İ.; Kocayigit, F. Drying and Rehydration Behaviors of Convection Drying of Green Peas. Drying Technol. 2011, 29, 1273–1282.
  • Wang, C.; Wang, L.; Thomas, C. Modelling the Mechanical Properties of Single Suspension‐Cultured Tomato Cells. Ann. Bot. 2004, 93, 443–453.
  • Gao, Q.; Pitt, R. Mechanics of Parenchyma Tissue Based on Cell Orientation and Microstructure. Trans. ASAE 1991, 34, 232–238.
  • Pitt, R. Models for the Rheology and Statistical Strength of Uniformly Stressed Vegetative Tissue. Trans. ASAE 1982, 25, 1776–1784.
  • Wu, H.-I.; Spence, R. D.; Sharpe, P. J. H.; Goeschl, J. D. Cell wall elasticity: I. A Critique of the Bulk Elastic Modulus Approach and an Analysis Using Polymer Elastic Principles. Plant Cell Environ. 1985, 8, 563–570.
  • Karunasena, H. C. P.; Hesami, P.; Senadeera, W.; Gu, Y. T.; Brown, R. J.; Oloyede, A. Scanning Electron Microscopic Study of Microstructure of Gala Apples During Hot Air Drying. Drying Technol. 2014, 32, 455–468.
  • Rahman, M. S. Toward Prediction of Porosity in Foods During Drying: A Brief Review. Drying Technol. 2001, 19, 1–13.
  • Rahman, M. S.; Dehydration and Microstructure. In Advances in Food Dehydration; Ratti, C., Ed.; CRC Press, Boca Raton, FL, USA, 2008; pp. 97–122.
  • Karunasena, H.; Gu, Y.; Brown, R.; Senadeera, W. Numerical Investigation of Case Hardening of Plant Tissue During Drying and Its Influence on the Cellular-Level Shrinkage. Drying Technol. 2015, 33, 713–734.
  • Wang, N.; Brennan, J. Changes in Structure, Density and Porosity of Potato During Dehydration. J. Food Eng. 1995, 24, 61–76.
  • Rahman, M. S.; Al‐Zakwani, I.; Guizani, N. Pore Formation in Apple During Air‐Drying as a Function of Temperature: Porosity and Pore‐Size Distribution. J. Sci. Food Agric. 2005, 85, 979–989.
  • Ratti, C. Shrinkage During Drying of Foodstuffs. J. Food Eng. 1994, 23, 91–105.
  • Bai, Y.; Rahman, M. S.; Perera, C. O.; Smith, B.; Melton, L. D. Structural Changes in Apple Rings During Convection Air-Drying with Controlled Temperature and Humidity. J. Agric. Food Chem. 2002, 50, 3179–3185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.