Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 14
166
Views
1
CrossRef citations to date
0
Altmetric
ARTICLES

Characterization of isotherms and thin-layer drying of red kidney beans, Part II: Three-dimensional finite element models to estimate transient mass and heat transfer coefficients and water diffusivity

& ORCID Icon
Pages 1707-1718 | Received 15 May 2017, Accepted 26 Dec 2017, Published online: 25 Jan 2018

References

  • Jian, F.; Jayas, D. S. Characterization of Isotherms and Thin Layer Drying of Red Kidney Bean, Part I, Choosing Appropriate Empirical and Semi-theoretical Models. Drying Technol. 2017. (submitted).
  • Ghosh, P. K.; Jayas, D. S.; Smith, E. A.; Gruwel, M. L. H.; White, N. D. G.; Zhilkin, P. A. Mathematical Modelling of Wheat Kernel Drying with Input from Moisture Movement Studies Using Magnetic Resonance Imaging (MRI), Part I: Model Development and Comparison with MRI Observations. Biosyst. Eng. 2008, 100, 389–400. DOI: 10.1016/j.biosystemseng.2008.04.006.
  • Golestani, R.; Raisi, A.; Aroujajian, A. Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient. Drying Technol. 2013, 31, 40–51. DOI: 10.1080/07373937.2012.714826.
  • Wu, B.; Yang, W.; Jia, C. A Three-Dimensional Numerical Simulation of Transient Heat and Mass Transfer Inside a Single Rice Kernel During the Drying Process. Biosyst. Eng. 2004, 87 (2), 191–200. DOI: 10.1016/j.biosystemseng.2003.09.004.
  • Vega, A.; Numez, M.; Sturm, B.; Hofacker, W. Simulation of the Convective Drying Process with Automatic Control of Surface Temperature. J. Food Eng. 2016, 170, 16–23. DOI: 10.1016/j.jfoodeng.2015.08.033.
  • Mohan, V. P. C.; Talukdar, P. Three Dimensional Numerical Modeling of Simultaneous Heat and Moisture Transfer in a Moist Object Subjected to Convective Drying. Int. J. Heat Mass Transfer 2010, 53, 4638–4650. DOI: 10.1016/j.ijheatmasstransfer.2010.06.029.
  • Elgamal, R.; Ronsse, F.; Radwan, S. M.; Pieters, J. G. Coupling CFD and Diffusion Models for Analyzing the Convective Drying Behavior of a Single Rice Kernel. Drying Technol. 2014, 32, 311–320. DOI: 10.1080/07373937.2013.829088.
  • Haghighi, K.; Irudayaraj, J.; Stroshine, R. L.; Sokhansanj, S. Grain Kernel Drying Simulation Using the Finite Element Method. Trans. ASAE 1990, 33(6), 1957–1965. DOI: 10.13031/2013.31564.
  • Miketinac, M. J.; Sokhansanj, S.; Tutek, Z. Determination of Heat and Mass Transfer Coefficients in Thin Layer Drying of Grain. Trans. ASAE 1992, 35(6), 1853–1858. DOI: 10.13031/2013.28806.
  • Perre, P. The Proper Use of Mass Diffusion Equations in Drying Modeling: Introducing the Drying Intensity Number. Drying Technol. 2015, 33(15–16), 1949–1962.
  • Weres, J.; Jayas, D. S.; Ryniecki, A. An Inverse Heat Transfer Method for the Estimation of Convective Heat Transfer Coefficient. Agric. Eng. J. 1999, 8, 45–55.
  • Jian, F.; Jayas, D. S.; White, N. D. G. Heat Production of Canola under Airtight and Non-airtight Storage Condition. Trans. ASABE 2014, 57(4), 1151–1162.
  • Janjai, S.; Lamlert, N.; Intawee, P.; Mahayothee, B.; Haewsungcharern, M.; Bala, B. K.; Müller, J. Finite Element Simulation of Drying of Mango. Biosyst. Eng. 2008, 99(4), 523–531. DOI: 10.1016/j.biosystemseng.2007.12.010.
  • Karathanos, V. T.; Villalobos, G.; Saravacos, G. D. Comparison of Two Methods of Estimation of the Effective Moisture Diffusivity from Drying Data. J. Food Sci. 1990, 55(1), 218–231. DOI: 10.1111/j.1365-2621.1990.tb06056.x.
  • Zuritz, C. A.; Sastry, S. K.; McCoy, S. C.; Murakami, E. G.; Blaisdell, J. L. A Modified Fitch Device for Measuring the Thermal Conductivity of Small Food Particles. Trans. ASAE 1989, 32(2), 711–718. DOI: 10.13031/2013.31059.
  • Altuntas, E.; Demirtola, H. Effect of Moisture Content on Physical Properties of Some Grain Legume Seeds. N. Z. J. Crop Hortic. Sci. 2007, 35, 423–433. DOI: 10.1080/01140670709510210.
  • Heldman, D. R.; Heating and Cooling Process. In Food Process Engineering; Heldman, E. R., Ed.; AVI. Publishing Co.: Westpon, CT, 1975; pp 86–150.
  • Audu, S. S.; Aremu, M. O. Effect of Processing on Chemical Composition of red Kidney Bean (Phaseolus vulgaris L.) Flour. Pak. J. Nutr. 2011, 10(11), 1069–1075. DOI: 10.3923/pjn.2011.1069.1075.
  • Chilton, T. H.; Colburn, A. P. Mass Transfer (Absorption) Coefficients: Prediction from Data on Heat Transfer and Fluid Friction. Ind. Eng. Chem. 1934, 26(11), 1183–1187. DOI: 10.1021/ie50299a012.
  • Segerlind, L. J. Applied Finite Element Analysis, 2nd ed.; John Wiley and Sons: New York, 1984.
  • Jian, F.; Jayas, D. S.; White, N. D. G.; Alagusundaram, K. A Three-dimensional, Asymmetric, and Transient Model to Predict Grain Temperatures in Grain Storage Bins. Trans. ASAE 2005, 48(1), 263–271. DOI: 10.13031/2013.17927.
  • Haghighi, K.; Segerlind, L. J. Modeling Simultaneous Heat and Mass Transfer in an Isotropic Sphere-a Finite Element Approach. Trans. ASAE 1988, 31(2), 629–637. DOI: 10.13031/2013.30758.
  • Jia, C. C.; Siebenmorgen, T. J.; Howell, T. A.; Cnossen, A. G. Intra–Kernel Moisture Responses of Rice to Drying and Tempering Treatments by Finite Element Simulation. Trans. ASAE 2002, 45(4), 1037–1044. DOI: 10.13031/2013.9917.
  • Lambert, C.; Romdhana, H.; Courtois, F. Reverse Methodology to Identify Moisture Diffusivity during Air-drying of Foodstuffs. Drying Technol. 2015, 33, 1076–1085. DOI: 10.1080/07373937.2014.985792.
  • Vagenas, G. K.; Marinos-Kouris, D. Finite Element Simulation of Drying of Agricultural Products with Volumetric Changes. Appl. Math. Model. 1991, 15, 475–482. DOI: 10.1016/0307-904x(91)90037-p.
  • Misra, R. N.; Young, J. H. Numerical Solution of Simultaneous Moisture Diffusion and Shrinkage during Soybean Drying. Trans. ASAE 1980, 23(5), 1277–1282. DOI: 10.13031/2013.34760.
  • Lague, C.; Jenkins, B. M. Modeling Pre-harvest Stress-cracking of Rice Kernels Part II: Implementation and Use of the Model. Trans. ASAE 1991, 34(4), 1812–1823. DOI: 10.13031/2013.31804.
  • Lu, R.; Siebenmorgen, T. J. Moisture Diffusivity of Long-grain Rice Components. Trans. ASAE 1992, 35(6), 1955–1961. DOI: 10.13031/2013.28822.
  • Marousis, S. N.; Karatharms, V. T.; Saravacos, G. D. Effect of Sugars on the Water Diffusivity in Hydrated Granular Starches. J. Food Sci. 1989, 54, 1496–1552. DOI: 10.1111/j.1365-2621.1989.tb05144.x.
  • Trujillo, F. J.; Wiangkaew, C.; Pham, Q. T. Drying Modeling and Water Diffusivity in Beef Meat. J. Food Eng. 2007, 78, 74–85. DOI: 10.1016/j.jfoodeng.2005.09.010.
  • Perre, P.; May, B. K. A Numerical Drying Model That Accounts for the Coupling between Transfers and Solid Mechanics: Case of Highly Deformable Products. Drying Technol. 2001, 19, 1629–1643. DOI: 10.1081/drt-100107263.
  • Ramallo, L. A.; Mascheroni, R. H. Effect of Shrinkage on Prediction Accuracy of the Water Diffusion Model for Pineapple Drying. J. Food Process Eng. 2013, 36, 66–76. DOI: 10.1111/j.1745-4530.2011.00654.x.
  • Holman, J. P. Heat Transfer; McGraw-Hill: New York, 1990.
  • Chen, X. D.; Lin, S. X. Q.; Chen, G. On the Ratio of Heat to Mass Transfer Coefficient for Water Evaporation and its Impact upon Drying Modeling. Int. J. Heat Mass Transfer 2002, 45, 4369–4372. DOI: 10.1016/s0017-9310(02)00139-4.
  • Jaturonglumlert, S.; Kiatsiriroat, T. Heat and Mass Transfer in Combined Convective and Far-infrared Drying of Fruit Leather. J. Food Eng. 2010, 100, 254–260. DOI: 10.1016/j.jfoodeng.2010.04.007.
  • Golubovic, M. N.; Hettiarachchi, H. D. M.; Belding, W.; Worek, W. M. A New Method for the Experimental Determination of Lewis’ Relation. Int. Commun. Heat Mass Transfer 2006, 33, 929–935. DOI: 10.1016/j.icheatmasstransfer.2006.05.009.
  • Jurinak, J. J.; Mitchell, J. W. Effect of Matrix Properties on the Performance of a Counter Flow Rotary Dehumidifier. J. Heat Transfer 1984, 106(3), 638–645. DOI: 10.1115/1.3246728.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.