890
Views
44
CrossRef citations to date
0
Altmetric
ARTICLES

Process analytical technology for monitoring pharmaceuticals freeze-drying – A comprehensive review

, ORCID Icon & ORCID Icon
Pages 1839-1865 | Received 02 Nov 2017, Accepted 11 Feb 2018, Published online: 14 Mar 2018

References

  • Mellor, J. D. Fundamentals of Freeze-Drying; Academic Press: London, 1978.
  • Jennings, T. A. Lyophilization: Introduction and Basic Principles; Interpharm/CRC Press: Boca Raton, 1999.
  • Oetjen, G. W.; Haseley, P. Freeze-Drying; Wiley-VHC: Weinheim, 2004.
  • Fissore, D. Freeze-Drying of Pharmaceuticals. In Encyclopedia of Pharmaceutical Science and Technology, 4th ed.; Swarbrick, J., Ed.; CRC Press: London, 2013; pp 1723–1737.
  • Food and Drug Administration. Novel Drugs Summary, 2016. https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DrugInnovation/UCM536693.pdf (accessed March 1, 2018).
  • Costantino, H. R.; Pikal, M. J. Lyophilization of Biopharmaceuticals; AAPS Press: Arlington, VA, 2004.
  • Teagarden, D. L.; Petre, W. J.; Gold, P. M. Stabilized Prostaglandin E1. US Patent 5741523 A, 1998.
  • Tico Grau, J. R.; Del Pozo Carrascosa, A.; Salazar Macian, R.; Alonso Ciriza, S. Determinacion de Disolventes Residuales en Materias Primas Farmaceuticas: Applicacion en Amoxicilinas Sodicas Liofilzadas. Cienc. Ind. Farmaceut. 1998, 7(11), 325–330.
  • Den Brok, M. W.; Nuijen, B.; Lutz, C.; Opitz, H. G.; Beijnen, J. H. Pharmaceutical Development of a Lyophilized Dosage Form for the Investigational Anticancer Agent Imexon Using Dimethyl Sulfoxide as Solubilizing and Stability Agent. J. Pharm. Sci. 2005, 94(5), 1101–1114. DOI: 10.1002/jps.20331.
  • Rey, L. R. Automatic Regulation of the Freeze-Drying of Complex Systems. Biodynam. 1961, 8, 241–260.
  • Bellows, R. J.; King, C. J. Freeze-Drying of Aqueous Solutions: Maximum Allowable Operating Temperature. Cryobiology 1972, 9(6), 559–561. DOI: 10.1016/0011-2240(72)90179-4.
  • Tsourouflis, S.; Flink, J. M.; Karel, M. Loss of Structure in Freeze-Dried Carbohydrates Solutions: Effect of Temperature, Moisture Content and Composition. J. Sci. Food Agric. 1976, 27(6), 509–519. DOI: 10.1002/jsfa.2740270604.
  • Adams, G. D. J.; Irons, L. I. Some Implications of Structural Collapse During Freeze-Drying using Erwinia caratovora Lasparaginase as a Model. J. Chem. Technol. Biotechnol. 1993, 58(1), 71–76. DOI: 10.1002/jctb.280580110.
  • Pikal, M. J. Freeze-Drying of Proteins: Process, Formulation, and Stability. In Formulation and Delivery of Proteins and Peptides; Cleland, J. L.; Langer, R.; Eds.; American Chemical Society: Washington, 1994; pp 120–133.
  • Franks, F. Freeze-Drying of Bioproducts: Putting Principles into Practice. Eur. J. Pharm. Biopharm. 1998, 45(3), 221–229. DOI: 10.1016/s0939-6411(98)00004-6.
  • Wang, D. Q.; Hey, J. M.; Nail, S. L. Effect of Collapse on the Stability of Freeze-Dried Recombinant Factor VIII and α-Amylase. J. Pharm. Sci. 2004, 93(5), 1253–1263. DOI: 10.1002/jps.20065.
  • Johnson, R.; Lewis, L. Freeze-Drying Protein Formulations above their Collapse Temperatures: Possible Issues and Concerns. Am. Pharm. Rev. 2011, 14(3), 50–54.
  • Searles, J. Observation and Implications of Sonic Water Vapour Flow During Freeze-Drying. Am. Pharm. Rev. 2004, 7(2), 58–69.
  • Nail, S. L.; Searles, J. A. Elements of Quality by Design in Development and Scale-Up of Freeze-Dried Parenterals. Biopharm. Int. 2008, 21(1), 44–52.
  • Patel, S. M.; Swetaprovo, C.; Pikal, M. J. Choked Flow and Importance of Mach I in Freeze-Drying Process Design. Chem. Eng. Sci. 2010, 65(21), 5716–5727. DOI: 10.1016/j.ces.2010.07.024.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Using Mathematical Modeling and Prior Knowledge for QbD in Freeze-Drying Processes. In Quality by Design for Biopharmaceutical Drug Product Development; Jameel, F.; Hershenson, S.; Khan, M. A.; Martin-Moe, S.; Eds.; Springer: New York, 2015; pp 565–593.
  • Food and Drug Administration. Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Manufacturing and Quality Assurance, 2004. https://www.fda.gov/downloads/drugs/guidances/ucm070305.pdf (accessed October 2017).
  • Pisano, R.; Fissore, D.; Velardi, S. A.; Barresi, A. A. In-Line Optimization and Control of an Industrial Freeze-Drying Process for Pharmaceuticals. J. Pharm. Sci. 2010, 99(11), 4691–4709. DOI: 10.1002/jps.22166.
  • Daraoui, N.; Dufour, P.; Hammouri, H.; Hottot, A. Model Predictive Control During the Primary Drying Stage of Lyophilisation. Control Eng. Pract. 2010, 18(5), 483–494. DOI: 10.1016/j.conengprac.2010.01.005.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Freeze-Drying Cycle Optimization Using Model Predictive Control Techniques. Ind. Eng. Chem. Res. 2011, 50(12), 7363–7379. DOI: 10.1021/ie101955a.
  • Giordano, A.; Barresi, A. A.; Fissore, D. On the Use of Mathematical Models to Build the Design Space for the Primary Drying Phase of a Pharmaceutical Lyophilization Process. J. Pharm. Sci. 2011, 100(1), 311–324. DOI: 10.1002/jps.22264.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Advanced Approach to Build the Design Space for the Primary Drying of a Pharmaceutical Freeze-Drying Process. J. Pharm. Sci. 2011, 100(11), 4922–4933. DOI: 10.1002/jps.22668.
  • Koganti, V. R.; Shalaev, E. Y.; Berry, M. R.; Osterberg, T.; Youssef, M.; Hiebert, D. N.; Kanka, F. A.; Nolan, M.; Barrett, R.; Scalzo, G.; et al. Investigation of Design Space for Freeze-Drying: Use of Modeling for Primary Drying Segment of a Freeze-Drying Cycle. AAPS Pharm. Sci. Tech. 2011, 12(3), 854–861. DOI: 10.1208/s12249-011-9645-7.
  • Velardi, S. A.; Barresi, A. A. Development of Simplified Models for the Freeze-Drying Process and Investigation of the Optimal Operating Conditions. Chem. Eng. Res. Des. 2008, 86(1), 9–22. DOI: 10.1016/j.cherd.2007.10.007.
  • Fissore, D.; Pisano, R.; Barresi, A. A. A Model Based Framework to Optimize Pharmaceuticals Freeze-Drying. Drying Technol. 2012, 30(9), 946–958. DOI: 10.1080/07373937.2012.662711.
  • Pikal, M. J.; Shah, S.; Roy, M. L.; Putman, R. The Secondary Drying Stage of Freeze Drying: Drying Kinetics as a Function of Temperature and Pressure. Int. J. Pharm. 1980, 60(3), 203–217. DOI: 10.1016/0378-5173(90)90074-e.
  • Liapis, A. I.; Bruttini, R. A Theory for the Primary and Secondary Drying Stages of the Freeze-Drying of Pharmaceutical Crystalline and Amorphous Solutes: Comparison between Experimental Data and Theory. Sep. Technol. 1994, 4(3), 144–155. DOI: 10.1016/0956-9618(94)80017-0.
  • Sadikoglu, H.; Liapis, A. I. Mathematical Modelling of the Primary and Secondary Drying Stages of Bulk Solution Freeze-Drying in Trays: Parameter Estimation and Model Discrimination by Comparison of Theoretical Results with Experimental Data. Drying Technol. 1997, 15(3–4), 791–810. DOI: 10.1080/07373939708917262.
  • Warning, A. D.; Arquiza, J. M. R.; Datta, A. K. A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying. Food Bioprod. Process. 2015, 94, 637–648. DOI: 10.1016/j.fbp.2014.08.011.
  • Trelea, I. C.; Fonseca, F; Passot, S. Dynamic Modeling of the Secondary Drying Stage of Freeze Drying Reveals Distinct Desorption Kinetics for Bound Water. Drying Technol. 2016, 34(3), 335–345. DOI: 10.1080/07373937.2015.1054509.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Heat Transfer in Freeze-Drying Apparatus. In Heat Transfer; Dos Santos Bernardes, M. A., Ed.; Intech: Rijeka, 2011; pp 91–114.
  • Pisano, R.; Fissore, D.; Barresi, A. A.; Brayard, P.; Chouvenc, P.; Woinet, B. Quality by Design: Optimization of a Freeze-Drying Cycle Via Design Space in Case of Heterogeneous Drying Behavior and Influence of the Freezing Protocol. Pharm. Dev. Technol. 2013, 18(1), 280–295. DOI: 10.3109/10837450.2012.734512.
  • Hottot, A.; Vessot, S.; Andrieu, J. Determination of Mass and Heat Transfer Parameters During Freeze-Drying Cycle of Pharmaceutical Products. PDA J. Pharm. Sci. Technol. 2005, 59(2), 138–153.
  • Rasetto, V.; Marchisio, D. L.; Fissore, D.; Barresi, A. A. On the Use of a Dual-Scale Model to Improve Understanding of a Pharmaceutical Freeze-Drying Process. J. Pharm. Sci. 2010, 99(10), 4337–4350. DOI: 10.1002/jps.22127.
  • Oddone, I.; Van Bockstal, P.-J.; De Beer, T.; Pisano, R. Impact of Vacuum-Induced Surface Freezing on Inter- and Intra-Vial Heterogeneity. Eur. J. Pharm. Biopharm. 2016, 103, 167–178. DOI: 10.1016/j.ejpb.2016.04.002.
  • Fissore, D.; Pisano, R.; Barresi, A. A. A Model-Based Framework for the Analysis of Failure Consequences in a Freeze-Drying Process. Ind. Eng. Chem. Res. 2012, 51(38), 12386–12397. DOI: 10.1021/ie300505n.
  • Cavatur, R. K.; Suryanarayanan, R. Characterization of Phase Transitions During Freeze-Drying by in Situ X-Ray Powder Diffractometry. Pharm. Dev. Technol. 1998, 3(4), 579–586. DOI: 10.3109/10837459809028642.
  • Hawe, A; Friess, W. Impact of Freezing Procedure and Annealing on the Physico-Chemical Properties and the Formation of Mannitol Hydrate in Mannitol-Sucrose-NaCl Formulations. Eur. J. Pharm. Biopharm. 2006, 64(3), 316–325. DOI: 10.1016/j.ejpb.2006.06.002.
  • Monteiro Marques, J. P.; Le Loch, C.; Wolff, E.; Rutledge, D. N. Monitoring Freeze-Drying by Low Resolution NMR: Determination of Sublimation Endpoint. J. Food Sci. 1991, 56(6), 1707–1728. DOI: 10.1111/j.1365-2621.1991.tb08676.x.
  • Remmele, R. L.; Stushnoff, C.; Carpenter, J. F. Real-Time in Situ Monitoring of Lysozyme During Lyophilization Using Infrared Spectroscopy: Dehydration Stress in the Presence of Sucrose. Pharm. Res. 1997, 14(11), 1548–1555.
  • Mujat, M.; Greco, K.; Galbally-Kinney, K. L.; Hammer, D. X.; Ferguson, R. D.; Iftimia, N.; Mulhall, P.; Sharma, P.; Pikal, M. J.; Kessler, W. J. Optical Coherence Tomography-Based Freeze-Drying Microscopy. Biomed. Opt. Express 2012, 3(1), 55–63. DOI: 10.1364/boe.3.000055.
  • Greco, K.; Mujat, M.; Galbally-Kinney, K. L.; Hammer, D. X.; Ferguson, R. D.; Iftimia, N.; Mulhall, P.; Sharma, P.; Kessler, W. J.; Pikal, M. J. Accurate Prediction of Collapse Temperature Using Optical Coherence Tomography (OCT) based Freeze Drying Microscopy. J. Pharm. Sci. 2013, 102(6), 1773–1785. DOI: 10.1002/jps.23516.
  • MacKenzie, A. P. Apparatus for Microscopic Observations During Freeze-Drying. Biodynamica 1964, 9, 213–222.
  • Barresi, A. A.; Pisano, R.; Fissore, D.; Rasetto, V.; Velardi, S. A.; Vallan, A.; Parvis, M.; Galan, M. Monitoring of the Primary Drying of a Lyophilization Process in Vials. Chem. Eng. Process. 2009, 48(1), 408–423. DOI: 10.1016/j.cep.2008.05.004.
  • Johnson, R. E.; Gieseler, H.; Teagarden, D. L.; Lewis, L. M. Analytical Accessories for Formulation and Process Development in Freeze-Drying. Am. Pharm. Rev. 2009, 12(5), 54–60.
  • Wiggenhorn, M.; Winter, G.; Presser, I. The current state of PAT in freeze-drying. Am. Pharm. Rev. 2005, 8(1), 38–44 (European Pharmaceutical Review 2005, 10(4), 87–92).
  • Patel, S. M.; Pikal, M. J. Process Analytical Technologies (PAT) in Freeze-Drying of Parenteral Products. Pharm. Dev. Technol. 2009, 14(6), 567–587. DOI: 10.3109/10837450903295116.
  • Patel, S. M.; Doen, T.; Pikal, M. J. Determination of the End Point of Primary Drying in Freeze-Drying Process Control. AAPS Pharm. Sci. Tech. 2010, 11(1), 73–84. DOI: 10.1208/s12249-009-9362-7.
  • Barresi, A. A.; Fissore, D. In-Line Product Quality Control of Pharmaceuticals in Freeze-Drying Processes. In Modern Drying Technology, Vol. 3: Product Quality and Formulation; Tsotsas, E., Mujumdar, A. S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, 2011; pp 91–154.
  • Nail, S.; Tchessalov, S.; Shalaev, E.; Ganguly, A.; Renzi, E.; Dimarco, F.; Wegiel, L.; Ferris, S.; Kessler, W.; Pikal, M.; et al. Recommended Best Practices for Process Monitoring Instrumentation in Pharmaceutical Freeze Drying—2017. AAPS Pharm. Sci. Tech. 2017, 18(7), 2379–2393. DOI: 10.1208/s12249-017-0733-1.
  • Schneid, S. C.; Johnson, R. E.; Lewis, L. M.; Stärtzel, P.; Gieseler, H. Application of Process Analytical Technology for Monitoring Freeze-Drying of an Amorphous Protein Formulation: Use of Complementary Tools for Real-Time Product Temperature Measurements and Endpoint Detection. J. Pharm. Sci. 2015, 104(5), 1741–1749. DOI: 10.1002/jps.24389.
  • Fissore, D.; Pisano, R.; Barresi, A. A. On the use of Temperature Measurement to Monitor a Freeze-Drying Cycle for Pharmaceuticals. Proceedings of IEEE International Instrumentation and Measurements Technology Conference “I2MTC 2017”, Torino, Italy, May 22–25, 2017; pp 1276–1281 ( Paper 17039633).
  • Willemer, H. Measurement of Temperature, Ice Evaporation Rates and Residual Moisture Contents in Freeze-Drying. Dev. Biol. Stand. 1991, 74, 123–136.
  • Presser, I. Innovative Online Measurement Procedures to Optimize Freeze-Drying Processes. Ph.D. Thesis, University of Munich, Germany, 2003.
  • Kasper, J. C.; Wiggenhorn, M.; Resch, M.; Friess, W. Implementation and Evaluation of an Optical Fiber System as Novel Process Monitoring Tool During Lyophilization. Eur. J. Pharm. Biopharm. 2013, 83(3), 449–459. DOI: 10.1016/j.ejpb.2012.10.009.
  • Schneid, S., Gieseler, H. Evaluation of a New Wireless Temperature Remote Interrogation System (TEMPRIS) to Measure Product Temperature During Freeze Drying. AAPS Pharm. Sci. Tech. 2008, 9(3), 729–739. DOI: 10.1208/s12249-008-9099-8.
  • Bosca, S.; Barresi, A. A.; Fissore, D. Use of a Soft-Sensor for the Fast Estimation of Dried Cake Resistance During a Freeze-Drying Cycle. Int. J. Pharm. 2013, 451(1–2), 23–33. DOI: 10.1016/j.ijpharm.2013.04.046.
  • De Beer, T. R. M.; Wiggenhorn, M.; Veillon, R.; Debacq, C.; Mayeresse, Y.; Moreau, B.; Burggraeve, A.; Quinten, T.; Friess, W.; Winter, G.; et al. Importance of using Complementary Process Analyzers for the Process Monitoring, Analysis, and Understanding of Freeze Drying. Anal. Chem. 2009, 81(18), 7639–7649. DOI: 10.1021/ac9010414.
  • Nail, S. L., Johnson, W. Methodology for in-Process Determination of Residual Water in Freeze-Dried Products. Dev. Biol. Stand. 1991; 74, 137–151.
  • Chen, R.; Gatlin, L. A.; Kramer, T.; Shalaev, E. Y. Comparative Rates of Freeze-Drying for Lactose and Sucrose Solutions as Measured by Photographic Recording, Product Temperature, and Heat Flux Transducer. Pharm. Dev. Technol. 2008, 13(5), 367–374. DOI: 10.1080/10837450802244744.
  • Bosca, S.; Corbellini, S.; Barresi, A. A.; Fissore, D. Freeze-Drying Monitoring using a New Process Analytical Technology: Toward a “Zero Defect” Process. Drying Technol. 2013, 31(15), 1744–1755. DOI: 10.1080/07373937.2013.807431.
  • Thompson, T. N. Jr.; Ling, W. Freeze Drying Method. U.S. Patent 8434240 B2, 2013.
  • Fraser, D. S.; Thompson, T. N. Positioning Device for Temperature Sensor in Freeze Drying. U.S. Patent 4966469 A, 1990.
  • Fraser, D. S.; Thompson, T. N. Positioning Device for Temperature Sensor in Freeze Drying. U.S. Patent 5447374 A, 1995.
  • Sutherland, D. T.; MacKenzie, A. P.; Wise, D. B. Probe Positioning Device for a Flask Freeze Drying. U.S. Patent 5689895 A, 1997.
  • Corbellini, S.; Parvis, M.; Vallan, A. A Low-Invasive System for Local Temperature Mapping in Large Freeze Dryers. Proceedings of Instrumentation and Measurement Technology Conference—I2MTC 2009, Singapore, Republic of Singapore, May 5–7, 2009; pp 80–85.
  • Corbellini, S.; Parvis, M.; Vallan, A. In-Process Temperature Mapping System for Industrial Freeze-Dryers. IEEE Trans. Instrum. Meas. 2010, 59(5), 1134–1140. DOI: 10.1109/tim.2010.2040909.
  • Parvis, M.; Grassini, S.; Barresi, A. Sputtered Thermocouple for Lyophilization Monitoring. Proceedings of IEEE International Instrumentation and Measurement Technology Conference “I2MTC 2012”, Graz, Austria, May 13–16, 2012; pp 1994–1998 ( Paper 1569530153).
  • Grassini, S.; Parvis, M.; Barresi, A. A. Inert Thermocouple with Nanometric Thickness for Lyophilization Monitoring. IEEE Trans. Instrum. Meas. 2013, 62(5), 1276–1283. DOI: 10.1109/tim.2012.2223312.
  • Parvis, M.; Grassini, S.; Fulginiti, D.; Pisano, R.; Barresi, A. A. Sputtered Thermocouple Array for Vial Temperature Mapping. Proceedings of IEEE International Instrumentation and Measurements Technology Conference “I2MTC 2014”, Montevideo, Uruguay, May 12–15, 2014; pp 1465–1470.
  • Grassini, S.; Fulginiti, D.; Pisano, R.; Oddone, I.; Parvis, M. Real-Time Temperature Monitoring in Pharmaceutical Freeze-Drying. Proceedings of IEEE International Symposium on Medical Measurements and Applications “MeMeA 2014”, Lisbon, Portugal, June 11–12, 2014; pp 168–172.
  • Oddone, I.; Fulginiti, D.; Barresi, A. A.; Grassini, S.; Pisano, R. Non-Invasive Temperature Monitoring in Freeze Drying: Control of Freezing as a Case Study. Drying Technol. 2015, 33(13), 1621–1630. DOI: 10.1080/07373937.2015.1040026.
  • Hemteborg, H.; Zeleny, R.; Charoud-Got, J.; Martos, G.; Luddeke, J.; Schellin, H.; Teipel, K. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results. J. Pharm. Sci. 2014, 103(7), 2088–2097. DOI: 10.1002/jps.24017.
  • Thompson, T. N. Process and Device for Determining the End of Primary Stage of Freeze Drying. U.S. Patent 4780964, 1988.
  • Bosca, S.; Barresi, A. A.; Fissore, D. Design of a Robust Soft-Sensor to Monitor In-Line a Freeze-Drying Process. Drying Technol. 2015, 33(9), 1039–1050. DOI: 10.1080/07373937.2014.982250.
  • Dragoi, E. N.; Curteanu, S.; Fissore, D. Freeze-Drying Modeling and Monitoring using a New Neuro-Evolutive Technique. Chem. Eng. Sci. 2012, 72(16), 195–204. DOI: 10.1016/j.ces.2012.01.021.
  • Dragoi, E. N., Curteanu, S.; Fissore, D. On the use of Artificial Neural Networks to Monitor a Pharmaceutical Freeze-Drying Process. Drying Technol. 2013, 31(1), 72–81. DOI: 10.1080/07373937.2012.718308.
  • Jennings, T. A.; Duan, N. Calorimetric Monitoring of Lyophilization. PDA J. Pharm. Sci. Technol. 1995, 49(6), 272–282.
  • Vollrath, I.; Pauli, V.; Friess, W.; Freitag, A.; Hawe, A.; Winter, G. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying. J. Pharm. Sci. 2017, 106(5), 1249–1257. DOI: 10.1016/j.xphs.2016.12.030.
  • Ling, W. Using Surface Heat Flux Measurement to Monitor and Control a Freeze Drying Process. U.S. Patent 9121637 B2, 2015.
  • Neumann, K.-H. Freeze-Drying Apparatus. US Patent 2994132 A, 1961.
  • Oetjen, G. W.; Haseley, P.; Klutsch, H.; Leineweber, M. Method for Controlling a Freeze-Drying Process. US Patent 6163979 A, 2000.
  • Milton, N; Pikal, M. J.; Roy, M. L.; Nail, S. L. Evaluation of Manometric Temperature Measurement as a Method of Monitoring Product Temperature During Lyophilization. PDA J. Pharm. Sci. Technol. 1997, 51(1), 17–24. DOI: 10.1208/pt070114.
  • Tang, X. C.; Nail, S. L.; Pikal, M. J. Evaluation of Manometric Temperature Measurement, a Process Analytical Technology Tool for Freeze-Drying: Part I, Product Temperature Measurement. AAPS Pharm. Sci. Tech. 2006, 7(1), 9 ( article no. 14). DOI: 10.1208/pt070114.
  • Tang, X. C.; Nail, S. L.; Pikal, M. J. Evaluation of Manometric Temperature Measurement, a Process Analytical Technology Tool for Freeze-Drying: Part II, Measurement of Dry Layer Resistance. AAPS Pharm. Sci. Tech. 2006, 7(4), 8 ( article no. 93). DOI: 10.1208/pt070493.
  • Tang, X. C.; Nail, S. L.; Pikal, M. J. Evaluation of Manometric Temperature Measurement, a Process Analytical Technology Tool for Freeze-Drying: Part III, Heat and Mass Transfer Measurement. AAPS Pharm. Sci. Tech. 2006, 7(4), 7 ( article no. 97). DOI: 10.1208/pt070114.
  • Tang, X. C.; Nail, S. L.; Pikal, M. J. Freeze-Drying Process Design by Manometric Temperature Measurement: Design of a Smart Freeze-Dryer. Pharm. Res. 2005, 22(4), 685–700. DOI: 10.1007/s11095-005-2501-2.
  • Obert, J. P. Modeling, Optimization and On-Line Monitoring of the Lyophilization Process. Enhancement of Productivity and Quality of Lyophilized Lactic Bacteria. Ph.D. Thesis, INRA Paris-Grignon, 2001.
  • Liapis, A. I.; Sadikoglu, H. Dynamic Pressure Rise in the Drying Chamber as a Remote Sensing Method for Monitoring the Temperature of the Product During the Primary Drying Stage of Freeze-Drying. Drying Technol. 1998, 16(6), 1153–1171. DOI: 10.1080/07373939808917458.
  • Chouvenc, P.; Vessot, S.; Andrieu, J.; Vacus, P. Optimization of the Freeze-Drying Cycle: A New Model for Pressure Rise Analysis. Drying Technol. 2004, 22(7), 1577–1601. DOI: 10.1081/drt-200025605.
  • Velardi, S. A.; Rasetto, V.; Barresi, A. A. Dynamic Parameters Estimation Method: Advanced Manometric Temperature Measurement Approach for Freeze-Drying Monitoring of Pharmaceutical Solutions. Ind. Eng. Chem. Res. 2008, 47(21), 8445–8457. DOI: 10.1021/ie7017433.
  • Pisano, R.; Fissore, D.; Barresi, A. A. In-Line and Off-Line Optimization of Freeze-Drying Cycles for Pharmaceutical Products. Drying Technol. 2013, 31(8), 905–919. DOI: 10.1080/07373937.2012.718307.
  • Barresi, A. A.; Pisano, R.; Rasetto, V.; Fissore, D.; Marchisio, D. L. Model-Based Monitoring and Control of Industrial Freeze-Drying Processes: Effect of Batch Non-Uniformity. Drying Technol. 2010, 28(5), 577–590. DOI: 10.1080/07373931003787934.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Innovation in Monitoring Food Freeze-Drying. Drying Technol. 2011, 29(16), 1920–1931. DOI: 10.1080/07373937.2011.596299.
  • Fissore, D.; Pisano, R.; Barresi, A. A. On the Methods Based on the Pressure Rise Test for Monitoring a Freeze-Drying Process. Drying Technol. 2011, 29(1), 73–90. DOI: 10.1080/07373937.2010.482715.
  • Fissore, D.; Pisano, R. Barresi A.A. Method for Monitoring Primary Drying of a Freeze-Drying Process. European Patent 2148158 B1, 2014. U.S. Patent 9170049 B2, 2015.
  • Chouvenc, P.; Vessot, S.; Andrieu, J.; Vacus, P. Optimization of the Freeze-Drying Cycle: Adaptation of the Pressure Rise Analysis to Non-Instantaneous Isolation Valves. PDA J. Pharm. Sci. Technol. 2005, 59(5), 298–309. DOI: 10.1081/drt-200025605.
  • Pisano, R.; Ferri, G.; Fissore, D.; Barresi, A. A. Freeze-Drying Monitoring Via Pressure Rise Test: The Role of the Pressure Sensor Dynamics. Proceedings of I2MTC 2017—2017 IEEE International Instrumentation and Measurement Technology Conference, Torino, Italy, July 22–25, 2017; PP 1282–1287 (article No. 7969892).
  • Pisano, R.; Fissore, D.; Barresi, A. A. A New Method Based on the Regression of Step Response Data for Monitoring a Freeze-Drying Cycle. J. Pharm. Sci. 2014, 130(6), 1756–1765. DOI: 10.1002/jps.23976.
  • Kessler, W. J.; Davis, S. J.; Mulhall, P. A.; Finson, M. L. System for Monitoring a Drying Process. U.S. Patent Application 2006/0208191 A1, 2006.
  • Gieseler, H.; Kessler, W. J.; Finson, M.; Davis, S. J.; Mulhall, P. A.; Bons, V.; Debo, D. J.; Pikal, M. J. Evaluation of Tunable Diode Laser Absorption Spectroscopy for In-Process Water Vapor Mass Flux Measurements During Freeze Drying. J. Pharm. Sci. 2007, 96(7), 1776–1793. DOI: 10.1002/jps.20827.
  • Schneid, S. C.; Gieseler, H.; Kessler, W. J.; Pikal, M. J. Non-Invasive Product Temperature Determination During Primary Drying Using Tunable Diode Laser Absorption Spectroscopy. J. Pharm. Sci. 2009, 98(9), 3406–3418. DOI: 10.1002/jps.21522.
  • Kuu, W. Y.; Nail, S. L.; Sacha, G. Rapid Determination of Vial Heat Transfer Parameters Using Tunable Diode Laser Absorption Spectroscopy (TDLAS) in Response to Step-Changes in Pressure Set-Point During Freeze-Drying. J. Pharm. Sci. 2009, 98(3), 1136–1154. DOI: 10.1002/jps.21478.
  • Kuu, W. Y.; O’Bryan, K. R.; Hardwick, L. M.; Paul, Y. W. Product Mass Transfer Resistance Directly Determined During Freeze-Drying Cycle Runs Using Tunable Diode Laser Absorption Spectroscopy (TDLAS) and Pore Diffusion Model. Pharm. Dev. Technol. 2011, 16(4), 343–357. DOI: 10.3109/10837451003739263.
  • Schneid, S. C.; Gieseler, H.; Kessler, W. J.; Luthra, S. A.; Pikal, M. J. Optimization of the Secondary Drying Step in Freeze Drying Using TDLAS Technology. AAPS Pharm. Sci. Tech. 2011, 12(1), 379–387. DOI: 10.1208/s12249-011-9600-7.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Noninvasive Monitoring of a Freeze-Drying Process for tert-Butanol/Water Cosolvent-Based Formulations. Ind. Eng. Chem. Res. 2016, 55(19), 5670–5680. DOI: 10.1021/acs.iecr.5b04299.
  • Bruttini, R.; Rovero, G.; Baldi, G. Experimentation and Modeling of Pharmaceutical Lyophilisation Using a Pilot Plant. Chem. Eng. J. 1991, 45(3), 67–77. DOI: 10.1016/0300-9467(91)80022-o.
  • Rovero, G.; Ghio, S.; Barresi, A. A. Development of a Prototype Capacitive Balance for Freeze-Drying Studies. Chem. Eng. Sci. 2001, 56(11), 3575–3584. DOI: 10.1016/s0009-2509(01)00025-2.
  • Roth, C.; Winter, G.; Lee, G. Continuous Measurement of Drying Rate of Crystalline and Amorphous Systems During Freeze-Drying Using an In Situ Microbalance Technique. J. Pharm. Sci. 2001, 90(9), 1345–1355. DOI: 10.1002/jps.1087.abs.
  • Carullo, A.; Parvis, M.; Vallan, A. An Analytical Balance for Lyophilisation Systems. Proceedings of Instrumentation and Measurement Technology Conference—IMTC/98, St. Paul, MN, USA, May 18–21, 1998; pp 243–248.
  • Carullo, A.; Vallan, A. Measurement Uncertainty Issues in Freeze-Drying Processes. Measurement 2012, 45(7), 1706–1712. DOI: 10.1016/j.measurement.2012.04.017.
  • Tenedini, K. J.; Bart, S. J. Jr. Freeze Drying Methods Employing Vapor Flow Monitoring and/or Vacuum Pressure Control. U.S. Patent 6226887 B1, 2001.
  • Chase, D. R. Monitoring and Control of a Lyophilization Process using a Mass Flow Controller. Pharm. Eng. 1998, 18, 11–17.
  • Kan, B. Methods of Determining Freeze-Drying Process End-Points. In Freeze-Drying of Foods; Fisher, F. R., Ed.; National Academy of Sciences—National Research Council: Washington, DC, 1962; pp 163–177.
  • Pikal, M. J.; Roy, M. L.; Shah, S. Mass and Heat Transfer in Vial Freeze-Drying of Pharmaceuticals: Role of the Vial. J. Pharm. Sci. 1984, 73(9), 1224–1237. DOI: 10.1002/jps.2600730910.
  • Roy, M. L.; Pikal, M. J. Process Control in Freeze Drying: Determination of the End Point of Sublimation Drying by an Electronic Moisture Sensor. J. Parenter. Sci. Technol. 1989, 43(2), 60–66.
  • Armstrong, J. G. Use of the Capacitance Manometer Gauge in Vacuum Freeze-Drying. J. Parenter. Drug Assoc. 1980, 34(6), 473–483.
  • Pisano, R. Monitoring and Control of a Freeze-Drying Process of Pharmaceutical Products in Vials. Ph.D. Thesis, Politecnico di Torino, Italy, 2009.
  • Pisano, R.; Guler, S. B.; Barresi, A. A. In-Line Detection of Endpoint of Sublimation in a Freeze-Drying Process. In Cahier de l’AFSIA Nr 23. Proceedings of European Drying Conference AFSIA 2009, Lyon, France, May 14–15, 2009; pp 110–111.
  • Bardat, A.; Biguet, J.; Chatenet, E.; Courteille, F. Moisture Measurement: A New Method for Monitoring Freeze-Drying Cycles. PDA J. Parenter. Sci. Technol. 1993, 47(6), 293–299.
  • Genin, N.; Rene, F.; Corrieu, G. A Method for On-Line Determination of Residual Water Content and Sublimation End-Point During Freeze-Drying. Chem. Eng. Process. 1996, 35(4), 255–263. DOI: 10.1016/0255-2701(95)04131-1.
  • Rene, F.; Genin, N.; Corrieu, G. Procédé et Dispositif de Contrôle de la Lyophilisation Sous Vide. European Patent 756692 B1, 1998.
  • Rambhatla, S.; Ramot, R.; Bhugra, C.; Pikal, M. J. Heat and Mass Transfer Scale-Up Issues During Freeze Drying: II. Control and Characterization of the Degree of Supercooling. AAPS Pham. Sci. Tech. 2004, 5, 9 (Article 58). DOI: 10.1208/pt050458.
  • Trelea, I. C.; Passot, S.; Fonseca, F.; Marin, M. An Interactive Tool for the Optimization of Freeze-Drying Cycles Based on Quality Criteria. Drying Technol. 2007, 25(5), 741–751. DOI: 10.1080/07373930701370100.
  • Hottot, A.; Andrieu, J.; Hoang, V.; Shalaev, E. Y.; Gatlin, L. A.; Ricketts, S. Experimental Study and Modeling of Freeze-Drying in Syringe Configuration. Part II: Mass and Heat Transfer Parameters and Sublimation End-Points. Drying Technol. 2009, 27(1), 49–58. DOI: 10.1080/07373930802565814.
  • Mayeresse, Y.; Veillon, R.; Sibille, P. H.; Nomine, C. Freeze-Drying Process Monitoring Using a Cold Plasma Ionization Device. PDA J. Pharm. Sci. Technol. 2007, 61(3), 160–174.
  • Ehrhard, M.; Lema Martinez, C.; Luemkemann, J.; Shirmer, B.; Streubel, A.; Sukowski, L. Water Vapor Monitoring Apparatus. U.S. Patent 7765713 B2, 2008.
  • Jennings, T. A. Residual Gas Analysis and Vacuum Freeze Drying. J. Parenter. Drug Assoc. 1980, 34(3), 62–69.
  • Connelly, J. P.; Welch, J. V. Monitor Lyophilization with Mass Spectrometer Gas Analysis. J. Parenter. Sci. Technol. 1993, 47(2), 70–75.
  • Presser, I.; Denkinger, N.; Hoermann, H.; Winter, G. New Methods in Monitoring of Freeze Drying: The use of Mass Spectrometer Gas Analysis to Develop Freeze-Drying Processes. Proceedings of 4th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Florence, Italy, April 8–11, 2002.
  • Barfuss, H. Qualitätsüberwachung in Pharmazeutischen Gefriertrocknungsanlagen. Vak. Forsch. Prax. 2014, 26, 35–38. DOI: 10.1002/vipr.201400543.
  • Leebron, K. S.; Jennings, T. A. Determination of the Vacuum Outgassing Properties of Elastic Closures by Mass Spectrometry. J. Parenter. Sci. Technol. 1981, 35(3), 100–105. DOI: 10.1016/s0008-6215(00)83333-9.
  • Rasetto, V.; Marchisio, D. L.; Barresi, A. A. Analysis of the Fluid-Dynamics of the Drying Chamber to Evaluate the Effect of Pressure and Composition Gradients on the Sensor Response used for Monitoring the Freeze-Drying Process. Cahier de l’AFSIA Nr 23, Proceedings of the European Drying Conference AFSIA 2009, Lyon, France, May 14–15, 2009; pp 98–99.
  • Rey, L. P. Preserving Water-Containing Organic or Inorganic Substances. U.S. Patent 3078586, 1963.
  • De Luca, P.; Lachman, L. Lyophilization of Pharmaceuticals, I.; Effect of Certain Physical–Chemical Properties. J. Pharm. Sci. 1965, 54(4), 617–623.
  • Rieutord, L. M. A. Apparatus for Regulating Freeze-Drying Operations. U.S. Patent 3192643, 1965.
  • Rey, L. P. Glimpses into the Fundamental Aspects of Freeze-Drying. Dev. Biol. Stand. 1976, 36, 19–27. DOI: 10.1201/9780203021323.ch1.
  • Jennings, T. A. Method and Apparatus for Determining the Low Temperature Characteristics of Materials. U.S. Patent 4327573, 1982.
  • Alkeev, N.; Averin, S.; von Gratowski, S. New Method for Monitoring the Process of Freeze Drying of Biological Materials. AAPS Pharm. Sci. Tech. 2015, 16(6), 1474–1479. DOI: 10.1208/s12249-015-0341-x
  • Smith, G.; Polygalov, E.; Page, T. Lyosense™ Lyophilisation Process Control. J. Pharm. Pharmacol. 2010, 62(10), 1448–1449.
  • Smith, G.; Polygalov, E.; Arshad, M. S.; Page, T.; Taylor, J.; Ermolina, I. An Impedance-Based Process Analytical Technology for Monitoring the Lyophilisation Process. Int. J. Pharm. 2013, 449(1–2), 72–83. DOI: 10.1016/j.ijpharm.2013.03.060.
  • De Beer, T.; Burggraeve, A.; Fonteyne, M.; Saerens, L.; Remon, J. P.; Vervaet, C. Near Infrared and Raman Spectroscopy for the In-Process Monitoring of Pharmaceutical Production Processes. Int. J. Pharm. 2011, 417(1–2), 32–47. DOI: 10.1016/j.ijpharm.2010.12.012.
  • Pieters, S.; De Beer, T.; Vander Heyden, Y. Near-Infrared and Raman Spectroscopy: Potential Tools for Monitoring of Protein Conformational Instability During Freeze-Drying Processes. Am. Pharm. Rev. 2012, 15(1), 66 (Article 38367).
  • Kauppinen, A. Raman and Near-Infrared Spectroscopic Methods for In-Line Monitoring of Freeze-Drying Process. Ph.D. Thesis, University of Eastern Finland, 2015.
  • Presser, I.; Denkinger, N.; Hoermann, H.; Winter, G. New Methods in Monitoring of Freeze Drying: Near Infrared Spectroscopy Determination of Residue Moisture During Freeze Drying. Proceedings of Protein Stability Conference, Breckenridge (CO), USA, July 17–20, 2002.
  • Brülls, M.; Folestad, S.; Sparén, A.; Rasmuson, A. In-Situ Near-Infrared Spectroscopy Monitoring of the Lyophilization Process. Pharm. Res. 2003, 20(3), 494–499.
  • Brülls, M. J. A. Method of Monitoring a Freeze-Drying Process. U.S. Patent 6848196 B2, 2005.
  • De Beer, T. R. M.; Alleso, M.; Goethals, F.; Coppens, A.; Heyden, Y. V.; Lopez De Diego, H.; Rantanen, J.; Verpoort, F.; Vervaet, C.; Remon, J. P.; et al. Implementation of a Process Analytical Technology System in a Freeze-Drying Process Using Raman Spectroscopy for In-Line Process Monitoring. Anal. Chem. 2007, 79(21), 7992–8003. DOI: 10.1021/ac070549h.
  • Romero-Torres, S.; Wikström, H.; Grant, E. R.; Taylor, L. S. Monitoring of Mannitol Phase Behaviour During Freeze-Drying Using Non-Invasive Raman Spectroscopy. PDA J. Pharm. Sci. Technol. 2007, 61(2), 131–145.
  • De Beer, T. R. M.; Vercruysse, P.; Burggraeve, A.; Quinten, T.; Ouyang, J.; Zhang, X.; Vervaet, C.; Remon, J. P.; Baeyens, W. R. G. In-line and Real-Time Process Monitoring of a Freeze-Drying Process using Raman and NIR Spectroscopy as Complementary Process Analytical Technology (PAT) Tools. J. Pharm. Sci. 2009, 98(9), 3430–3446. DOI: 10.1002/jps.21633.
  • Rosas, J. G.; de Waard, H.; De Beer, T.; Vervaet, C.; Remon, J. P.; Hinrichs, W. L. J.; Frijlink, H. W.; Blanco, M. NIR Spectroscopy for the In-Line Monitoring of a Multicomponent Formulation During the Entire Freeze-Drying Process. J. Pharm. Biomed. Anal. 2014, 97, 39–46. DOI: 10.1016/j.jpba.2014.04.010.
  • Hsu, C. C.; Ward, C. A.; Pearlman, R.; Nguyen, H. M.; Yeung, D. A.; Curley, J. G. Determining the Optimum Residual Moisture in Lyophilized Protein Pharmaceuticals. Dev. Biol. Stand. 1992, 74, 255–271.
  • Tang, X. C.; Pikal, M. J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm. Res. 2004, 21(2), 191–200. DOI: 10.1023/b:pham.0000016234.73023.75.
  • Suherman, P. M.; Taylor, P. M.; Smith, G. Development of a Remote Electrode System for Monitoring the Water Content of Materials Inside a Glass Vial. Pharm. Res. 2002, 19(3), 337–344.
  • Heling, Z.; Yuming, G.; Jianhua, Z. Moisture Content Monitoring System Based on Relative Dielectric Constant During Vacuum Freeze-Drying of Fruit and Vegetable. Int. Agric. Eng. J. 2015, 24(2), 104–111.
  • Kauppinen, A.; Toiviainen, M.; Korhonen, O.; Aaltonen, J.; Järvinen, K.; Paaso, J.; Juuti, M.; Ketolainen, J. In-Line Multipoint Near-Infrared Spectroscopy for Moisture Content Quantification During Freeze-Drying. Anal. Chem. 2013, 85(4), 2377–2384. DOI: 10.1021/ac303403p.
  • Kauppinen, A.; Toiviainen, M.; Lehtonen, M.; Järvinen, K.; Paaso, J.; Juuti, M.; Ketolainen, J. Validation of a Multipoint Near-Infrared Spectroscopy Method for In-Line Moisture Content Analysis During Freeze-Drying. J. Pharm. Biomed. Anal. 2014, 95, 229–237. DOI: 10.1016/j.jpba.2014.03.008.
  • Pieters, S.; De Beer, T.; Kasper, J. C.; Boulpaep, D.; Waszkiewicz, O.; Goodarzi, M.; Tistaert, C.; Friess, W.; Remon, J.-P.; Vervaet, C.; et al. Near-Infrared Spectroscopy for In-Line Monitoring of Protein Unfolding and its Interactions with Lyoprotectants During Freeze-Drying. Anal. Chem. 2012, 84(2), 947–955. DOI: 10.1021/ac2022184.
  • Sylvester, B.; Porfire, A.; Van Bockstal, P.-J.; Porav, S.; Achim, M.; De Beer, T.; Tomuţă, I. Formulation Optimization of Freeze-Dried Long-Circulating Liposomes and In-Line Monitoring of the Freeze-Drying Process using an NIR Spectroscopy Tool. J. Pharm. Sci. 2018, 107(1), 139–146. DOI: 10.1016/j.xphs.2017.05.024.
  • Schneid, S.; Gieseler, H. Process Analytical Technology (PAT) in Freeze-Drying: Tunable Diode Laser Absorption Spectroscopy as an Evolving Tool for Cycle Monitoring. Eur. Pharm. Rev. 2007, 6, 18–25.
  • Schneid, S. C. Investigation of Novel Process Analytical Technology (PAT) Tools for Use in Freeze-Drying Processes. Ph.D. Thesis, Friedrich-Alexander University, Erlangen, Germany, 2009.
  • Oetjen, G. W.; Schilder, G. In Process Moisture Control within Narrow End Limits During Freeze-Drying of Proteins. Proceedings of PDA Annual Meeting, Atlanta USA, Nov 10–12, 2013.
  • Tang, X. C.; Nail, S. L.; Pikal, M. J. Freeze-Drying Process Design by Manometric Temperature Measurement: Design of a Smart Freeze-Dryer. Pharm. Res. 2003, 22(4), 685–700. DOI: 10.1007/s11095-005-2501-2.
  • Oetjen, G. W. Method of Determining Residual Moisture Content During Secondary Drying in a Freeze-Drying Process. U.S. Patent 6176121 B1, 2001.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Monitoring of the Secondary Drying in Freeze-Drying of Pharmaceuticals. J. Pharm. Sci. 2011, 100(2), 732–742. DOI: 10.1002/jps.22311.
  • Fissore, D.; Barresi, A.; Pisano, R. Method for Monitoring the Secondary Drying in a Freeze-Drying Process. European Patent 2148158 B1, 2011.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Quality by Design in the Secondary Drying Step of a Freeze-Drying Process. Drying Technol. 2012, 30(11–12), 1307–1316. DOI: 10.1080/07373937.2012.704466.
  • Thompson, T. N. LyoPAT™: Real-Time Monitoring and Control of the Freezing and Primary Drying Stages During Freeze-Drying for Improved Product Quality and Reduced Cycle Times. Am. Pharm. Rev. 2013, 16(7), 68–74.
  • Smith, G.; Arshad, M. S.; Polygalov, E.; Ermolina, I.; McCoy, T. R.; Matejtschuk, P. Process Understanding in Freeze-Drying Cycle Development: Applications for Through-Vial Impedance Spectroscopy (TVIS) in Mini-Pilot Studies. J. Pharm. Innovat. 2017, 12(1), 26–40. DOI: 10.1007/s12247-016-9266-5.
  • Kauppinen, A.; Toiviainen, M.; Aaltonen, J.; Korhonen, O.; Aaltonen, J.; Järvinen, K.; Juuti, M.; Riikka, P.; Ketolainen, J. Microscale Freeze-Drying with Raman Spectroscopy as a Tool for Process Development. Anal. Chem. 2013, 85(4), 2109–2116. DOI: 10.1021/ac3027349.
  • Barresi, A. Overcoming Common Scale-Up Issues. Pharm. Technol. Eur. 2011, 23(7), 4–8.
  • Fissore, D.; Barresi, A. A. Scale-Up and Process Transfer of Freeze-Drying Recipes. Drying Technol. 2011, 29(14), 1673–1684. DOI: 10.1080/07373937.2011.597059.
  • Gieseler, H.; Kramer, T.; Pikal, M. J. Use of Manometric Temperature Measurement (MTM) and SMART™ Freeze Dryer Technology for Development of an Optimized Freeze-Drying Cycle. J. Pharm. Sci. 2007, 96(12), 3402–3418. DOI: 10.1002/jps.20982.
  • Velardi, S.; Barresi, A. Method and System for Controlling a Freeze Drying Process. European Patent 2156124 B1, 2012.
  • Galan, M. Monitoring and Control of Industrial Freeze-Drying Operations: The Challenge of Implementing QbD (Quality-by-Design). In Freeze-Drying/Lyophilization of Pharmaceuticals and Biological Products, 3rd Rev. ed.; Rey, L.; May, J. C., Eds.; Informa Healthcare: New York, 2010; pp 441–459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.