Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 6
292
Views
11
CrossRef citations to date
0
Altmetric
Articles

Energy and drying time optimization of convective drying: Taguchi and LBM methods

&
Pages 722-734 | Received 16 Nov 2017, Accepted 15 Mar 2018, Published online: 11 Sep 2018

References

  • Wang, N.; Brennan, J.-G. A Mathematical Model of Simultaneous Heat and Moisture Transfer during Drying of Potato. J. Food Eng. 1995, 24, 47–60. doi:10.1016/0260-8774(94)P1607-Y
  • Yang, H.; Sakai, N.; Watanabe, M. Drying Model with Non-Isotropic Shrinkage Deformation Undergoing Simultaneous Heat and Mass Transfer. Drying Technol. 2001, 19, 1441–1460. doi:10.1081/DRT-100105299
  • Esfahani, J.-A.; Majdi, H.; Barati, E. Analytical Two-Dimensional Analysis of the Transport Phenomena during Convective Drying: Apple Slices. J. Food Eng. 2014, 123, 87–93. doi:10.1016/j.jfoodeng.2013.09.019
  • Vahidhosseini, S.-M.; Barati, E.; Esfahani, J.-A. Green’s Function Method (GFM) and Mathematical Solution for Coupled Equations of Transport Problem during Convective Drying. J. Food Eng. 2016, 187, 24–36. doi:10.1016/j.jfoodeng.2016.04.017
  • Barati, E.; Esfahani, J.-A. Mathematical Modeling of Convective Drying: Lumped Temperature and Spatially Distributed Moisture in Slab. Energy 2011, 36, 2294–2301. doi:10.1016/j.energy.2010.06.007
  • Barati, E.; Esfahani, J.-A. Mathematical Simulation of Convective Drying: Spatially Distributed Temperature and Moisture in Carrot Slab. Int. J. Therm. Sci. 2012, 56, 86–94. doi:10.1016/j.ijthermalsci.2012.01.003
  • Barati, E.; Esfahani, J.-A. A Novel Approach to Evaluate the Temperature during Drying of Food Products with Negligible External Resistance to Mass Transfer. J. Food Eng. 2013, 114, 39–46. doi:10.1016/j.jfoodeng.2012.07.028
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Millar, G. J.; Karim, M. A. Mathematical Model for Intermittent Microwave Convective (IMCD) Drying of Food Materials. Drying Technol. 2016, 34, 962–973. doi:10.1080/07373937.2015.1087408
  • Aversa, M.; Curcio, S.; Calabrò, V.; Iorio, G. An Analysis of the Transport Phenomena Occurring during Food Drying Process. J. Food Eng. 2007, 78, 922–932. doi:10.1016/j.jfoodeng.2005.12.005
  • Oko, C.-O.-C.; NnamchI, S.-N. Coupled Heat and Mass Transfer in a Solar Grain Dryer. Drying Technol. 2013, 31, 82–90. doi:10.1080/07373937.2012.719561
  • Perussello, C.-A.; Mariani, V.-C.; Amarante, A.-C.-C. Numerical and Experimental Analysis of the Heat and Mass Transfer during Okara Drying. Appl. Therm. Eng. 2012, 48, 325–331. doi:10.1016/j.applthermaleng.2012.04.025
  • Sheikholeslami, M.; Seyednezhad, M. Lattice Boltzmann Method Simulation for CuO-Water Nanofluid Flow in a Porous Enclosure with Hot Obstacle. J. Mol. Liq. 2017, 243, 249–256. doi:10.1016/j.molliq.2017.08.038
  • Sheikholeslami, M. Lattice Boltzmann Method Simulation for MHD Non-Darcy Nanofluid Free Convection. Physica B 2017, 516, 55–71. doi:10.1016/j.physb.2017.04.029
  • Shokouhmand, H.; Hosseini, S.; Abdollahi, V. Numerical Simulation of Drying a Porous Material Using the Lattice Boltzmann Method. J. Por. Media 2012, 15, 303–315. doi:10.1615/JPorMedia.v15.i4.10
  • El Abrach, H.; Dhahri, H.; Mhimid, A. Numerical Simulation of Drying of a Saturated Deformable Porous Media by the Lattice Boltzmann Method. Transp. Por. Med. 2013, 99, 427–452. doi:10.1007/s11242-013-0194-2
  • El Abrach, H.; Dhahri, H.; Mhimid, A. Lattice Boltzmann Method for Modeling Heat and Mass Transfers during Drying of Deformable Porous Medium. J. Por. Med. 2013, 6, 837–855. doi:10.1615/JPorMedia.v16.i9.50
  • El Abrach, H.; Dhahri, H.; Mhimid, A. Numerical Simulation of Drying of a Deformable Anisotropic Porous Medium Using the Lattice Boltzmann Method. Drying Technol. 2013, 31, 1400–1414. doi:10.1080/07373937.2013.796485
  • Chielle, D.-P.; Bertuol, D.-A.; Meili, L.; Tanabe, E.-H.; Dotto, G.-L. Convective Drying of Papaya Seeds (Carica papaya L.) and Optimization of Oil Extraction. Ind. Crops Prod. 2016, 85, 221–228. doi:10.1016/j.indcrop.2016.03.010
  • Defendi, R.-O.; Paraiso, P.-R.; Jorge, L.-M.-M. Optimization Study of Soybean Intermittent Drying in Fixed-Bed Drying Technology. Drying Technol. 2017, 35, 125–137. doi:10.1080/07373937.2016.1162171
  • Velic, D.; Planinic, M.; Tomas, S.; Bilic, M. Influence of Airflow Velocity on Kinetics of Convection Apple Drying. J. Food Eng. 2004, 64, 97–102. doi:10.1016/j.jfoodeng.2003.09.016
  • Caccavale, P.; De Bonis, M.-V.; Ruocco, G. Conjugate Heat and Mass Transfer in Drying: A Modeling Review. J. Food Eng. 2016, 176, 28–35. doi:10.1016/j.jfoodeng.2015.08.031
  • Kaya, A.; Aydin, O.; Dincer, I. Numerical Modeling of Heat and Mass Transfer during Forced Convection Drying of Rectangular Moist Objects. Int. J. Heat Mass Transfer 2006, 49, 3094–3103. doi:10.1016/j.ijheatmasstransfer.2006.01.043
  • De Bonis, M.-V.; Ruocco, G. Conjugate Heat and Mass Transfer by Jet Impingement over a Moist Protrusion. Int. J. Heat Mass Transfer 2014, 70, 192–201. doi:10.1016/j.ijheatmasstransfer.2013.11.014
  • Chen, S.; Doolen, G.-D. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. doi:10.1146/annurev.fluid.30.1.329
  • Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and beyond; Oxford University Press: Oxford, 2001.
  • Fung, C. P.; Kang, P.-C. Multi-Response Optimization in Friction Properties of PBT Composites Using Taguchi Method and Principle Component Analysis. J. Mater. Process. Technol. 2005, 170, 602–610. doi:10.1016/j.jmatprotec.2005.06.040
  • Motevali, A.; Minaei, S.; Khoshtaghaza, M.-H.; Amirnejat, M.-H. Comparison of Energy Consumption and Specific Energy Requirements of Different Methods for Drying Mushroom Slices. Energy 2011, 36, 6433–6441. doi:10.1016/j.energy.2011.09.024
  • Pattanaik, A.; Satpathy, M.-P.; Mishra, S.-C. Dry Sliding Wear Behavior of Epoxy Fly Ash Composite with Taguchi Optimization. Int. J. Eng. Sci. Technol. 2016, 19, 710–716. doi:10.1016/j.jestch.2015.11.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.