Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 7
395
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Combined conventional thermal and microwave drying process for typical Chinese lignite

, , , , , & show all
Pages 813-823 | Received 09 Aug 2017, Accepted 04 Apr 2018, Published online: 18 Dec 2018

References

  • National Bureau of Statistics of China. Energy Statistics Reports for China. http://data.stats.gov.cn/english/ (accessed Jul 1, 2017).
  • Xu, C.; Xu, G.; Yang, Y.; Zhao, S.; Zhang, K.; Zhang, D. An Improved Configuration of Low-Temperature Pre-Drying Using Waste Heat Integrated in an Air-Cooled Lignite Fired Power Plant. Appl. Therm. Eng. 2015, 90, 312–321. DOI:10.1016/j.applthermaleng.2015.06.101.
  • Atsonios, K.; Violidakis, I.; Agraniotis, M.; Grammelis, P.; Nikolopoulos, N.; Kakaras, E. Thermodynamic Analysis and Comparison of Retrofitting Pre-Drying Concepts at Existing Lignite Power Plants. Appl. Therm. Eng. 2015, 74, 165–173. DOI:10.1016/j.applthermaleng.2013.11.007.
  • Zhu, X.; Wang, C. A.; Tang, C.; Che, D. Energy Analysis of a Lignite Predrying Power Generation System with an Efficient Waste Heat Recovery System. Drying Technol. 2017, 35, 1492–1505. DOI:10.1080/07373937.2016.1256891.
  • Liu, M.; Li, G.; Han, X.; Qin, Y.; Zhai, M.; Yan, J. Energy and Exergy Analyses of a Lignite-Fired Power Plant Integrated with a Steam Dryer at Rated and Partial Loads. Drying Technol. 2017, 35, 203–217. DOI:10.1080/07373937.2016.1166438.
  • Shang, X.; Si, C.; Wu, J.; Miao, Z.; Zhang, Y.; Wang, Y.; Wang, B.; Hou, K. Comparison of Drying Methods on Physical and Chemical Properties of Shengli Lignite. Drying Technol. 2016, 34, 454–461. DOI:10.1080/07373937.2015.1060496.
  • Akkoyunlu, M. T.; Erdem, H. H.; Pusat, S. Determination of Economic Upper Limit of Drying Processes in Coal-Fired Power Plants. Drying Technol. 2016, 34, 420–427. DOI:10.1080/07373937.2015.1060489.
  • Nikolopoulos, N.; Violidakis, I.; Karampinis, E.; Agraniotis, M.; Bergins, C.; Grammelis, P.; Kakaras, E. Report on Comparison among Current Industrial Scale Lignite Drying Technologies (a Critical Review of Current Technologies). Fuel. 2015, 155, 86–114. DOI:10.1016/j.fuel.2015.03.065.
  • Zhu, J.-F.; Liu, J.-Z.; Wu, J.-H.; Cheng, J.; Wang, Z.-H.; Zhou, J.-H.; Cen, K.-F. Effects of Different Drying Methods on the Grinding Characteristics of Ximeng Lignite. Fuel. 2015, 162, 305–312. DOI:10.1016/j.fuel.2015.09.028.
  • Idris, A.; Khalid, K.; Omar, W. Drying of Silica Sludge Using Microwave Heating. Appl. Therm. Eng. 2004, 24, 905–918. DOI:10.1016/j.applthermaleng.2003.10.001.
  • Wen, Y.; Liao, J.; Liu, X.; Wei, F.; Chang, L. Removal Behaviors of Moisture in Raw Lignite and Moisturized Coal and Their Dewatering Kinetics Analysis. Drying Technol. 2017, 35, 88–96. DOI:10.1080/07373937.2016.1160246.
  • He, Q.; Chen, J.; Miao, Z.; Wan, K.; Tian, J.; Chen, Z.; Wan, Y. Thermal Fragmentation and Pulverization Properties of Lignite in Drying Process and Its Mechanism. Drying Technol. 2017, 36, 1–9. DOI:10.1080/07373937.2017.1405436.
  • Pusat, S.; Akkoyunlu, M. T.; Erdem, H. H. Effect of Drying on Coal Particle Size. Paper presented at the International Conference on Advances in Mechanical Engineering, Istanbul Turkey, May 13–15, 2015.
  • Rong, L.; Song, B.; Yin, W.; Bai, C.; Chu, M. Drying Behaviors of Low-Rank Coal under Negative Pressure: Kinetics and Model. Drying Technol. 2017, 35, 173–181. DOI:10.1080/07373937.2016.1164712.
  • Pusat, S.; Akkoyunlu, M. T. A New Empirical Correlation to Model Drying Characteristics of Low Rank Coals. IJOGCT. 2017, 15, 287–297. DOI:10.1504/ijogct.2017.084476.
  • Pusat, S.; Akkoyunlu, M.; T.; Erdem, H.; H. Evaporative Drying of Low-Rank Coal. Sustainable Drying Technologies 2016, Ch. 04. DOI:10.5772/63744.
  • Pusat, S.; Erdem, H. H. Drying Characteristics of Coarse Low-Rank-Coal Particles in a Fixed-Bed Dryer. Int. J. Coal Prep. Util. 2017, 37, 303–313. DOI:10.1080/19392699.2016.1179638.
  • Pusat, S.; Akkoyunlu, M. T.; Erdem, H. H.; Dağdaş, A. Drying Kinetics of Coarse Lignite Particles in a Fixed Bed. Fuel Process. Technol. 2015, 130, 208–213. DOI:10.1016/j.fuproc.2014.10.023.
  • Pusat, S.; Akkoyunlu, M. T.; Pekel, E.; Akkoyunlu, M. C.; Özkan, C.; Kara, S. S. Estimation of Coal Moisture Content in Convective Drying Process Using ANFIS. Fuel Process. Technol. 2016, 147, 12–17. DOI:10.1016/j.fuproc.2015.12.010.
  • Akkoyunlu, M. T.; Akkoyunlu, M. C.; Pusat, S.; Özkan, C. Prediction of Accurate Values for Outliers in Coal Drying Experiments. Arab. J. Sci. Eng. 2015, 40, 2721–2727. DOI:10.1007/s13369-015-1746-2.
  • Chen, W.; Lei, Y.; Annamalai, K.; Sun, J. Analysis of d2 law in Case of Shengli Lignite Drying under Inert and Uninert Environment. Drying Technol. 2018, 36, 448–458. DOI:10.1080/07373937.2017.1340304.
  • Liu, X.; Hirajima, T.; Nonaka, M.; Mursito, A. T.; Sasaki, K. Use of FTIR Combined with Forms of Water to Study the Changes in Hydrogen Bonds during Low-Temperature Heating of Lignite. Drying Technol. 2016, 34, 185–193. DOI:10.1080/07373937.2015.1026984.
  • Rao, Z.; Zhao, Y.; Huang, C.; Duan, C.; He, J. Recent Developments in Drying and Dewatering for Low Rank Coals. Prog. Energy Combust. Sci. 2015, 46, 1–11. DOI:10.1016/j.pecs.2014.09.001.
  • ITU Radiocommunication Sector. The Industrial, Scientific and Medical (ISM) Radio Bands. https://www.itu.int/ (accessed Feb 3, 2018).
  • Kingman, S. W. Recent Developments in Microwave Processing of Minerals. Int. Mater. Rev. 2006, 51, 1–12. DOI:10.1179/174328006X79472.
  • Jones, D. A.; Lelyveld, T. P.; Mavrofidis, S. D.; Kingman, S. W.; Miles, N. J. Microwave Heating Applications in Environmental Engineering—A Review. Resour. Conserv. Recycl. 2002, 34, 75–90. DOI:10.1016/S0921-3449(01)00088-X.
  • Hong, Y.-D.; Lin, B.-Q.; Li, H.; Dai, H.-M.; Zhu, C.-J.; Yao, H. Three-Dimensional Simulation of Microwave Heating Coal Sample with Varying Parameters. Appl. Therm. Eng. 2016, 93, 1145–1154. DOI:10.1016/j.applthermaleng.2015.10.041.
  • Cheng, J.; Zhou, J.; Li, Y.; Liu, J.; Cen, K. Improvement of Coal Water Slurry Property through Coal Physicochemical Modifications by Microwave Irradiation and Thermal Heat. Energy Fuels. 2008, 22, 2422–2428. DOI:10.1021/ef7005244.
  • Marland, S.; Merchant, A.; Rowson, N. Dielectric Properties of Coal. Fuel. 2001, 80, 1839–1849. DOI:10.1016/S0016-2361(01)00050-3.
  • Tahmasebi, A.; Yu, J.; Li, X.; Meesri, C. Experimental Study on Microwave Drying of Chinese and Indonesian Low-Rank Coals. Fuel Process. Technol. 2011, 92, 1821–1829. DOI:10.1016/j.fuproc.2011.04.004.
  • Hacifazlioglu, H. Comparison of Efficiencies of Microwave and Conventional Electric Ovens in the Drying of Slime-Coal Agglomerates. Int. J. Coal Prep. Util. 2017, 37, 169–178. DOI:10.1080/19392699.2016.1143368.
  • Si, C.; Wu, J.; Wang, Y.; Shang, X.; Zhang, Y.; Liu, G. Experimental Study on Three-Stage Microwave-Assisted Fluidized Bed Drying of Shengli Lump Lignite. Drying Technol. 2016, 34, 685–691. DOI:10.1080/07373937.2015.1070359.
  • Zhu, J.-F.; Liu, J.-Z.; Wu, J.-H.; Cheng, J.; Zhou, J.-H.; Cen, K.-F. Thin-Layer Drying Characteristics and Modeling of Ximeng Lignite under Microwave Irradiation. Fuel Process. Technol. 2015, 130, 62–70. DOI:10.1016/j.fuproc.2014.09.033.
  • Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Wang, W.; Mao, Y.; Ma, C. Microwave Drying Performance of Single-Particle Coal Slime and Energy Consumption Analyses. Fuel Process. Technol. 2016, 143, 69–78. DOI:10.1016/j.fuproc.2015.11.012.
  • Seehra, M. S.; Kalra, A.; Manivannan, A. Dewatering of Fine Coal Slurries by Selective Heating with Microwaves. Fuel. 2007, 86, 829–834. DOI:10.1016/j.fuel.2006.08.015.
  • Li, H.; Lin, B.; Hong, Y.; Liu, T.; Huang, Z.; Wang, R.; Wang, Z. Assessing the Moisture Migration during Microwave Drying of Coal Using Low-Field Nuclear Magnetic Resonance. Drying Technol. 2018, 36, 567–577. DOI:10.1080/07373937.2017.1349136.
  • Song, Z.; Yao, L.; Jing, C.; Zhao, X.; Wang, W.; Ma, C. Drying Behavior of Lignite under Microwave Heating. Drying Technol. 2017, 35, 433–443. DOI:10.1080/07373937.2016.1182547.
  • Andrés, A.; Bilbao, C.; Fito, P. Drying Kinetics of Apple Cylinders under Combined Hot Air–Microwave Dehydration. J. Food Eng. 2004, 63, 71–78. DOI:10.1016/S0260-8774(03)00284-X.
  • Song, F.; Li, Z.; Raghavan, G. S. V. Combined Microwave–Hot-Air Drying of Burdock Slices with Feedback Temperature Control at Surface and Core. Drying Technol. 2017, 35, 1781–1790. DOI:10.1080/07373937.2017.1279626.
  • Siebert, T.; Gall, V.; Karbstein, H. P.; Gaukel, V. Serial Combination Drying Processes: A Measure to Improve Quality of Dried Carrot Disks and to Reduce Drying Time. Drying Technol. 2018, 36, 1–14. DOI:10.1080/07373937.2017.1418374.
  • Argyropoulos, D.; Heindl, A.; Müller, J. Assessment of Convection, Hot-Air combined with Microwave-Vacuum and Freeze-Drying Methods for Mushrooms with Regard to Product Quality. Int. J. Food Sci. Technol. 2011, 46, 333–342. DOI:10.1111/j.1365-2621.2010.02500.x.
  • Zielinska, M.; Sadowski, P.; Błaszczak, W. Combined Hot Air Convective Drying and Microwave-Vacuum Drying of Blueberries (Vaccinium corymbosum L.): Drying Kinetics and Quality Characteristics. Drying Technol. 2016, 34, 665–684. DOI:10.1080/07373937.2015.1070358.
  • Alibas, I. Microwave, Air and Combined Microwave–Air-Drying Parameters of Pumpkin Slices. LWT Food Sci Technol. 2007, 40, 1445–1451. DOI:10.1016/j.lwt.2006.09.002.
  • Fu, B. A.; Chen, M. Q. Thin-Layer Drying Kinetics of Lignite during Hot Air Forced Convection. Chem. Eng. Res. Des. 2015, 102, 416–428. DOI:10.1016/j.cherd.2015.07.019.
  • Song, Z.; Yao, L.; Jing, C.; Zhao, X.; Wang, W.; Sun, J.; Mao, Y.; Ma, C. Elucidation of the Pumping Effect during Microwave Drying of Lignite. Ind. Eng. Chem. Res. 2016, 55, 3167–3176. DOI:10.1021/acs.iecr.5b04881.
  • Mihoubi, D.; Bellagi, A. Drying-Induced Stresses during Convective and Combined Microwave and Convective Drying of Saturated Porous Media. Drying Technol. 2009, 27, 851–856. DOI:10.1080/07373930902988122.
  • Zhou, Z.; Li, X.; Liang, J.; Liu, J.; Zhou, J.; Cen, K. Surface Coating Improves Coal–Water Slurry Formation of Shangwan Coal. Energy Fuels. 2011, 25, 3590–3597. DOI:10.1021/ef200529h.
  • Tahmasebi, A.; Yu, J.; Han, Y.; Zhao, H.; Bhattacharya, S. Thermogravimetric Study and Modeling for the Drying of a Chinese Lignite. Asia-Pac. J. Chem. Eng. 2013, 8, 793–803. DOI:10.1002/apj.1722.
  • Pusat, S.; Akkoyunlu, M. T.; Erdem, H. H.; Teke, I. Effects of Bed Height and Particle Size on Drying of a Turkish Lignite. Int. J. Coal Prep. Util. 2015, 35, 196–205. DOI:10.1080/19392699.2015.1009051.
  • Song, C.; Luo, G.; Sang, T.; Li, Z.; Xu, W.; Raghavan, G. S. V.; Chen, H. AHP-Based Procedure for Optimization of Microwave-Assisted Blackberry Sugar Osmotic Process. Drying Technol. 2018, 36, 1–10. DOI:10.1080/07373937.2017.1421550.
  • Zhao, D.; Wang, Y.; Zhu, Y.; Ni, Y. Effect of Carbonic Maceration Pre-Treatment on the Drying Behavior and Physicochemical Compositions of Sweet Potato Dried with Intermittent or Continuous Microwave. Drying Technol. 2016, 34, 1604–1612. DOI:10.1080/07373937.2016.1138231.
  • Nguyen, T. H.; Lanoisellé, J. L.; Allaf, T.; Allaf, K. Experimental and Fundamental Critical Analysis of Diffusion Model of Airflow Drying. Drying Technol. 2016, 34, 1884–1899. DOI:10.1080/07373937.2016.1155052.
  • Liu, Z.; Song, Y.; Guo, Y.; Wang, H.; Liu, J. Optimization of Pulsed Electric Field Pretreatment Parameters for Preserving the Quality of Raphanus sativus. Drying Technol. 2016, 34, 692–702. DOI:10.1080/07373937.2015.1070859.
  • Assadpour, E.; Jafari, S.-M. Spray Drying of Folic Acid within Nano-Emulsions: Optimization by Taguchi Approach. Drying Technol. 2017, 35, 1152–1160. DOI:10.1080/07373937.2016.1242016.
  • Akkoyunlu, M. T.; Pekel, E.; Akkoyunlu, M. C.; Pusat, S.; Özkan, C.; Kara, S. S. Determination of Effective Parameters for Coal Moisture Content Determination Using a ‘Design of Experiment’ Method. Int. J. Coal Prep. Util. 2017, 1–8. DOI:10.1080/19392699.2017.1300582.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.