Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 8
703
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Microencapsulation of caffeic acid and its release using a w/o/w double emulsion method: Assessment of formulation parameters

&
Pages 950-961 | Received 08 Dec 2017, Accepted 20 May 2018, Published online: 28 Jun 2018

References

  • Embuscado, M. E. Spices and Herbs: Natural Sources of Antioxidants – A Mini Review. J. Funct. Foods 2015, 18, 811–819. 2017,
  • Guan, Y.; Chu, Q.; Fu, L.; Ye, J. Determination of Antioxidants in Cosmetics by Micellar Electrokinetic Capillary Chromatography with Electrochemical Detection. J. Chromatogr. A 2005, 1074, 2, 201–204.
  • Kaur, L. P. A New Era in Noval Drug Delivery. Int. J. Pharmaceutical Res. Bio-Sci. 2013, 2, 456–468.
  • Montenegro, L. Nanocarriers for Skin Delivery of Cosmetic Antioxidants. J. Pharm. Pharmacogn. Res. 2014, 2, 73–92.
  • Asimi, O. A.; Sahu, N. P.; Pal, K. Antioxidant Capacity of Crude Water and Ethyl Acetate Extracts of Some Indian Spices and Their Antimicrobial Activity against Vibrio vulnificus and Micrococcus luteus. J. Med. Plants Res. 2013, 7, 1907–1915.
  • Oroian, M.; Escriche, I. Antioxidants: Characterization, Natural Sources, Extraction and Analysis. Food Res. Int. 2015, 74, 10–36.
  • Amorati, R.; Pedulli, G. F.; Cabrini, L.; Zambonin, L.; Landi, L. Solvent and pH Effects on the Antioxidant Activity of Caffeic and Other Phenolic Acids. J. Agric. Food Chem. 2006, 54, 2932–2937.
  • Božič, M.; Gorgieva, S.; Kokol, V. Laccase-Mediated Functionalization of Chitosan by Caffeic and Gallic Acids for Modulating Antioxidant and Antimicrobial Properties. Carbohydr. Polym. 2012, 87, 2388–2398.
  • Pinho, E.; Soares, G.; Henriques, M. Evaluation of Antibacterial Activity of Caffeic Acid Encapsulated by β-cyclodextrins. J. Microencapsul. 2015, 32, 804–810.
  • Zhang, M.; Li, J.; Zhang, L.; Chao, J. Preparation and Spectral Investigation of Inclusion Complex of Caffeic Acid with Hydroxypropyl-β-Cyclodextrin. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2009, 71, 1891–1895.
  • Aguiar, J.; Estevinho, B. N.; Santos, L. Microencapsulation of Natural Antioxidants for Food Application – the Specific Case of Coffee Antioxidants – A Review. Trends Food Sci. Technol. 2016, 58, 21–39.
  • Khan, F. A.; Maalik, A.; Murtaza, G. Inhibitory Mechanism against Oxidative Stress of Caffeic Acid. J. Food Drug Anal. 2016, 24, 695–702.
  • Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; Di Felice, M.; Scaccini, C. Inhibition of Human Low-Density Lipoprotein Oxidation by Caffeic Acid and Other Hydroxycinnamic Acid Derivatives. Free Radic. Biol. Med. 1995, 19, 541–552.
  • Laranjinha, J. A. N.; Almeida, L. M.; Madeira, V. M. C. Reactivity of Dietary Phenolic Acids with Peroxyl Radicals: Antioxidant Activity upon Low Density Lipoprotein Peroxidation. Biochem. Pharmacol 1994, 48, 487–494.
  • Fesen, M. R.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, K. W. Inhibition of HIV-l Integrase by Flavones, Caffeic Acid Phenethyl Ester (Cape) and Related Compounds. Biochem. Pharmacol. 1994, 48, 595–608.
  • Janbaz, J. H.; Saeed, S. A.; Gilani, A. H. Studies on the Protective Effects of Caffeic Acid and Quercetin on Chemical-Induced Hepatotoxicity in Rodents. Phytomed. 2004, 11, 424–430.
  • Meyer, A. S.; Donovan, J. L.; Pearson, D. A.; Waterhouse, A. L.; Frankel, E. N. Fruit Hydroxycinnamic Acids Inhibit Human Low-Density Lipoprotein Oxidation in Vitro. J. Agric. Food Chem. 1998, 46, 1783–1787.
  • Aladedunye, F.; Catel, Y.; Przybylski, R. Novel Caffeic Acid Amide Antioxidants: Synthesis, Radical Scavenging Activity and Performance under Storage and Frying Conditions. Food Chem. 2012, 130, 945–952.
  • Damasceno, S. S.; Santos, N. A.; Santos, I. M. G.; Souza, A. L.; Souza, A. G.; Queiroz, N. Caffeic and Ferulic Acids: An Investigation of the Effect of Antioxidants on the Stability of Soybean Biodiesel during Storage. Fuel 2013, 107, 641–646.
  • Kowalski, R. Changes of Linoleic Acid Concentration during Heating of Some Plant-Origin Oils with Polyphenol Addition. J. Food Qual. 2010, 33, 269–282.
  • Spagnol, C. M.; Zaera, A. M.; Isaac, V. L. B.; Corrêa, M. A.; Salgado, H. R. N. Release and Permeation Profiles of Spray-Dried Chitosan Microparticles Containing Caffeic Acid. Saudi Pharm. J 2018. https://doi.org/10.1016/j.jsps.2017.12.021
  • Garrido, E. M. P. J.; Cerqueira, A. S.; Chavarria, D.; Silva, T.; Borges, F.; Garrido, J. M. P. J. Microencapsulation of Caffeic Acid Phenethyl Ester and Caffeic Acid Phenethyl Amide by Inclusion in Hydroxypropyl-β-Cyclodextrin. Food Chem. 2018, 254, 260–265.
  • Aguiar, J.; Costa, R.; Rocha, F.; Estevinho, B. N.; Santos, L. Design of Microparticles Containing Natural Antioxidants: Preparation, Characterization and Controlled Release Studies. Powder Technol 2017, 313, 287–292.
  • Paulo, F.; Santos, L. Design of Experiments for Microencapsulation Applications: A Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1327–1340.
  • Costa, R.; Santos, L. Delivery Systems for Cosmetics – From Manufacturing to the Skin of Natural Antioxidants. Powder Technol 2017, 322, 402–416.
  • Chang, R.-K.; Raw, A.; Lionberger, R.; Yu, L. Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatologic Products. Aaps J. 2013, 15, 41–52.
  • Mitsui, T. New Cosmetic Science, 1st ed.; Elsevier Science B.V., 1997.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid. Interface Sci. 2015, 223, 40–54.
  • Moon, J. K.; Shibamoto, T. Formation of Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components: Quinic Acid, Caffeic Acid, and Chlorogenic Acid. J. Agric. Food Chem. 2010, 58, 5465–5470.
  • Ahmed, I. A.; Mikail, M. A.; Ibrahim, M.; Hazali, N.; Rasad, M. S. B. A.; Ghani, R. A.; Wahab, R. A.; Arief, S. J.; Yahya, M. N. A. Antioxidant Activity and Phenolic Profile of Various Morphological Parts of Underutilised Baccaurea Angulata Fruit. Food Chem. 2015, 172, 778–787.
  • Bahl, Y.; Sah, H. Dynamic Changes in Size Distribution of Emulsion Droplets during Ethyl Acetate-Based Microencapsulation Process. AAPS PharmSciTech. 2000, 1, 41–49.
  • Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by Solvent Evaporation: State of the Art for Process Engineering Approaches. Int. J. Pharm. 2008, 363, 26–39.
  • Berchane, N. S.; Jebrail, F. F.; Carson, K. H.; Rice-Ficht, A. C.; Andrews, M. J. About Mean Diameter and Size Distributions of Poly(Lactide-Co-Glycolide) (PLG) Microspheres. J. Microencapsul. 2006, 23, 539–552.
  • Herrmann, J.; Bodmeier, R. Biodegradable, Somatostatin Acetate Containing Microspheres Prepared by Various Aqueous and Non-Aqueous Solvent Evaporation Methods. Eur. J. Pharm. Biopharm. 1998, 45, 75–82.
  • Li, X.; Deng, X.; Yuan, M.; Xiong, C.; Huang, Z.; Zhang, Y.; Jia, W. Investigation on Process Parameters Involved in Preparation of Poly-DL-Lactide-Poly(Ethylene Glycol) Microspheres Containing Leptospira Interrogans Antigens. Int. J. Pharm. 1999, 178, 245–255.
  • Yang, Y. Y.; Chung, T. S.; Ping, N. Morphology, Drug Distribution, and In Vitro Release Profiles of Biodegradable Polymeric Microspheres Containing Protein Fabricated by Double-Emulsion Solvent Extraction/Evaporation Method. Biomaterials 2001, 22, 231–241.
  • Psomiadou, E.; Tsimidou, M. Stability of Virgin Olive Oil. Autoxidation Studies. J. Agric. Food Chem. 2002, 50, 716–721.
  • Kamel, S.; Ali, N.; Jahangir, K.; Shah, S. M.; El-Gendy, A. A. Pharmaceutical Significance of Cellulose: A Review. Express Polym. Lett. 2008, 2, 758–778.
  • Murtaza, G. Ethylcellulose Microparticles : A review. Acta Pol Pharm 2012, 69, 11–22.
  • Nordby, M. H.; Kjøniksen, A. L.; Nyström, B., Roots, J.; Thermoreversible gelation of aqueous mixtures of pectin and chitosan. Rheology. Biomacromolecules. 2003, 4, 337–343.
  • Stortz, T. A.; Marangoni, A. G. The Replacement for Petrolatum: thixotropic Ethylcellulose Oleogels in Triglyceride Oils. Green Chem 2014, 16, 3064–3070.
  • Chung, T. W.; Huang, Y. Y.; Liu, Y. Z. Effects of the Rate of Solvent Evaporation on the Characteristics of Drug Loaded PLLA and PDLLA Microspheres. Int. J. Pharm. 2001, 212, 161–169.
  • Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double Emulsion Solvent Evaporation Techniques Used for Drug Encapsulation. Int. J. Pharm. 2015, 496, 173–190.
  • Pistel, K. F.; Kissel, T. Effects of Salt Addition on the Microencapsulation of Proteins Using W/O/W Double Emulsion Technique. J. Microencapsul. 2000, 17, 467–483.
  • Raval, J. P.; Naik, D. R.; Amin, K. A.; Patel, P. S. Controlled-Release and Antibacterial Studies of Doxycycline-Loaded Poly(ε-Caprolactone) Microspheres. J. Saudi Chem. Soc 2014, 18, 566–573.
  • Ajun, W.; Yan, S.; Li, G.; Huili, L. Preparation of Aspirin and Probucol in Combination Loaded Chitosan Nanoparticles and in Vitro Release Study. Carbohydr. Polym 2009, 75, 566–574.
  • Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm 1983, 15, 25–35.
  • Jyothi, N. V. N.; Prasanna, P. M.; Sakarkar, S. N.; Prabha, K. S.; Ramaiah, P. S.; Srawan, G. Y. Microencapsulation Techniques, Factors Influencing Encapsulation Efficiency. J. Microencapsul. 2010, 27, 187–197.
  • Schlicher, E. J. A. M.; Postma, N. S.; Zuidema, J.; Talsma, H.; Hennink, W. E. Preparation and Characterisation of Poly (D,L-Lactic-Co-Glycolic Acid) Microspheres Containing Desferrioxamine. Int. J. Pharm 1997, 153, 235–245.
  • Rafati, H.; Coombes, A. G. A.; Adler, J.; Holland, J.; Davis, S. S. Protein-Loaded Poly(DL-Lactide-Co-Glycolide) Microparticles for Oral Administration: Formulation, Structural and Release Characteristics. J. Control. Release 1997, 43, 89–102.
  • Meng, F. T.; Ma, G. H.; Liu, Y. D.; Qiu, W.; Su, Z. G. Microencapsulation of Bovine Hemoglobin with High Bio-Activity and High Entrapment Efficiency Using a W/O/W Double Emulsion Technique. Colloids Surfaces B Biointerfaces 2004, 33, 177–183.
  • Bilati, U.; Allémann, E.; Doelker, E. Poly(D,L-lactide-co-glycolide) Protein-Loaded Nanoparticles Prepared by the Double Emulsion Method-Processing and Formulation Issues for Enhanced Entrapment Efficiency . J. Microencapsul. 2005, 22, 205–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.