Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 8
335
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Impact of initial moisture content levels, freezing rate and instant controlled pressure drop treatment (DIC) on dehydrofreezing process and quality attributes of quince fruits

, , &
Pages 1028-1043 | Received 17 Nov 2017, Accepted 23 Apr 2018, Published online: 08 Oct 2018

References

  • De Ancos, B. n.; Sánchez-Moreno, C.; De Pascual-Teresa, S.; Cano, M. P. Freezing Preservation of Fruits. In Handbook of Fruits and Fruit Processing; Sinha, N. K.; Sidhu, J. S.; Barta, J.; Wu, J. S. B.; Pilar Cano, M., Eds. Wiley & Sons Ltd, 2012.; pp 103–120.
  • Blanda, G.; Cerretani, L.; Cardinali, A.; Barbieri, S.; Bendini, A.; Lercker, G. Osmotic Dehydrofreezing of Strawberries: Polyphenolic Content, Volatile Profile and Consumer Acceptance. LWT–Food Sci. Technol. 2009, 42, 30–36. DOI: 10.1016/j.lwt.2008.07.002.
  • Castelló, M. L.; Fito, P. J.; Argüelles, A.; Fito, P. Application of the SAFES (Systematic Approach to Food Engineering Systems) Methodology to Strawberry Freezing Process. J. Food Eng. 2007, 83, 238–249. DOI: 10.1016/j.jfoodeng.2007.02.035.
  • Chiralt, A.; Martı́nez-Navarrete, N.; Martı́nez-Monzó, J.; Talens, P.; Moraga, G.; Ayala, A.; Fito, P.; Changes in Mechanical Properties throughout Osmotic Processes: Cryoprotectant Effect. J. Food Eng. 2001, 49, 129–135. DOI: 10.1177/1082013203034757.
  • James, C.; Purnell, G.; James, S. J. A Review of Novel and Innovative Food Freezing Technologies. Food Bioprocess Technol. 2015, 8, 1616–1634. DOI: 10.1007/s11947-015-1542-8.
  • Robbers, M.; Singh, R. P.; Cunha, L. M. Osmotic-Convective Dehydrofreezing Process for Drying Kiwifruit. J. Food Science. 1997, 62, 1039–1042. DOI: 10.1111/j.1365-2621.1997.tb15033.x.
  • James, C.; Purnell, G.; James, S. J. A Critical Review of Dehydrofreezing of Fruits and Vegetables. Food Bioprocess Technol. 2014, 7, 1219–1234. DOI: org/10.1007/s11947-014-1293-y.
  • Li, B.; Sun, D.-W. Novel Methods for Rapid Freezing and Thawing of Foods – a Review. J. Food Eng. 2002, 54, 175–182. DOI: 10.1016/S0260-8774(01)00209-6.
  • Ben Haj Said, L.; Bellagha, S.; Allaf, K. Measurements of Texture, Sorption Isotherms and Drying/Rehydration Kinetics of Dehydrofrozen-Textured Apple. J.Food Eng. 2015, 165, 22–33. DOI: 10.1016/j.jfoodeng.2015.04.029.
  • Wu, S.; Zhu, D.; Zhang, X.; Huang, J. Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM). Energy Fuels. 2010, 24, 1894–1898. DOI: 10.1021/ef9013967.
  • Uemura, T.; Tagawa, A. Effect of Dehydration Method on the Physical Properties of Fresh-Cut Radish after Freezing and after Post-Thaw Rehydration in the Dehydro-Freezing Technique. Journal. Of. The. Japanese. Society. For. Food. Science. and Technology. 2012, 59, 115–121. DOI: 10.3136/nskkk.59.115.
  • Ben Haj Said, L.; Bellagha, S.; Allaf, K. Dehydrofreezing of Apple Fruits: Freezing Profiles, Freezing Characteristics, and Texture Variation. Food Bioprocess Technol. 2016, 9, 252–261. DOI: 10.1007/s11947-015-1619-4.
  • Mounir, S.; Allaf, T.; Sulaiman, I.; Allaf, K. Instant Controlled Pressure Drop (DIC) Texturing of Heat-Sensitive Spray-Dried Powders: Phenomenological Modeling and Optimization. Drying Technol. 2015, 33, 1524–1533. DOI: 10.1080/07373937.2015.1009539.
  • Mounir, S.; Allaf, K. Response Surface Methodology (RSM) as Relevant Way to Study and Optimize Texturing by Instant Controlled Pressure Drop DIC in Innovative Manufacturing of Egg White and Yolk Powders. Drying Technol. 2017, 36 (8), 990–1005. DOI: 10.1080/07373937.2017.1367929.
  • Bellaloui, N.; Gillen, A. M. Soybean Seed Protein, Oil, Fatty acids, N, and S Partitioning as Affected by Node Position and Cultivar Differences; Agricu. Sci. 2010, 1 (3), 110–118. DOI: 10.4236/as.2010.13014.
  • Hajji, W.; Allaf, T.; Bellagha, S.; Allaf, K. Strawberries: Antioxidant Properties and Preservation Processes. Malone, N., Ed. Nova Science Publishers: Hauppauge, NY, 2014.; pp. 359–382 (accessed 2014).
  • Ozel, M. Effect of Insulation Location on Dynamic Heat-Transfer Characteristics of Building External Walls and Optimization of Insulation Thickness. Energy Buildings. 2014, 72, 288–295. DOI: 10.1016/j.enbuild.2013.11.015.
  • Armacell armaflex xgls: l'isolation flexible polyvalente. 2016. http://www.armacell.com/. (accessed June 25, 2016).
  • Jie, W.; Lite, L.; Yang, D. The Correlation between Freezing Point and Soluble Solids of Fruits. J. Food Eng. 2003, 60, 481–484. DOI: 10.1016/S0260-8774(03)00081-5.
  • Ramallo, L. A.; Mascheroni, R. H. Dehydrofreezing of Pineapple. J. Food Eng. 2010, 99, 269–275. DOI: 10.1016/j.jfoodeng.2010.02.026.
  • Pham, Q. T. Freezing Time Formulas for Foods with Low Moisture Content, Low Freezing Point and for Cryogenic Freezing. J. Food Eng. 2014, 127, 85–92. DOI: 10.1016/j.jfoodeng.2013.12.007.
  • Maestrelli, A.; Lo Scalzo, R.; Lupi, D.; Bertolo, G.; Torreggiani, D. Partial Removal of Water before Freezing: cultivar and Pre-Treatments as Quality Factors of Frozen Muskmelon (Cucumis Melo, Cv Reticulatus Naud.). J. Food Eng. 2001, 49, 255–260. DOI: 10.1016/S0260-8774(00)00211-9.
  • Pathare, P. B.; Opara, U. L.; Al-Said, F. A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. DOI: 10.1007/s11947-012-0867-9.
  • Rhim, J. W.; Nunes, R. V.; Jones, V. A.; Swartzel, K. R. Kinetics of Color Change of Grape Juice Generated Using Linearly Increasing Temperature. J. Food Science. 1989, 54, 776–777. DOI: 10.1111/j.1365-2621.1989.tb04710.x.
  • Menesatti, P.; Pallottino, F.; Lanza, G.; Paglia, G. Prediction of Blood Orange MT Firmness by Multivariate Modelling of Low Alterative Penetrometric Data Set: A Preliminary Study. Postharvest Biol. Technol. 2009, 51, 434–436. DOI: 10.1016/j.postharvbio.2008.08.007.
  • Chassagne-Berces, S.; Poirier, C.; Devaux, M.-F.; Fonseca, F.; Lahaye, M.; Pigorini, G.; Girault, C.; Marin, M.; Guillon, F. Changes in Texture, Cellular Structure and Cell Wall Composition in Apple Tissue as a Result of Freezing. Food Res. Int. 2009, 42, 788–797. DOI: 10.1016/j.foodres.2009.03.001.
  • Raji, A.; O.; Akinoso, R.; Ibanga, U.; Raji, M.; O. Freezing and Thawing Characteristics of Some Selected Nigerian Soups. J. Food Process Eng. 2016, 40 (2). DOI: 10.1111/jfpe.12354.
  • Moraga, G.; MartÍNez-Navarrete, N.; Chiralt, A. Compositional Changes of Strawberry Due to Dehydration, Cold and Freezing-Thawing Processes. J. Food Processing Preservation. 2006, 30, 458–474. DOI: 10.1111/j.1745-4549.2006.00079.x.
  • Roos, Y. H. Effect of Moisture on the Thermal Behavior of Strawberries Studied Using Differential Scanning Calorimetry. J. Food Science. 1987, 52, 146–149. DOI: 10.1111/j.1365-2621.1987.tb13992.x.
  • Sá, M. M.; Sereno, A. M. Glass Transitions and State Diagrams for Typical Natural Fruits and Vegetables. Thermochim. Acta. 1994, 246, 285–297. DOI: 10.1016/0040-6031(94)80096-0.
  • Sobral, P. J. A.; Telis, V. R. N.; Habitante, A. M. Q. B.; Sereno, A. Phase Diagram for Freeze-Dried Persimmon. Thermochim. Acta. 2001, 376, 83–89. DOI: 10.1016/S0040-6031(01)00533-0.
  • Wang, H.; Zhang, S.; Chen, G. Glass Transition and State Diagram for Fresh and Freeze-Dried Chinese Gooseberry. J. Food Eng. 2008, 84, 307–312. DOI: 10.1016/j.jfoodeng.2007.05.024.
  • Nguyen, T. H.; Lanoisellé, J. L.; Allaf, T.; Allaf, K. Experimental and Fundamental Critical Analysis of Diffusion Model of Airflow Drying. Drying Technol. 2016, 34, 1884–1899. DOI: 10.1080/07373937.2016.1155052.
  • Mujumdar, A. S. Instant Controlled Pressure Drop (DIC) in Food Processing. Drying Technol. 2016, 34, 2026–2026. DOI: 10.1080/07373937.2016.1204902.
  • Allaf, T.; Allaf K. Instant Controlled Pressure Drop (D.I.C.) in Food Processing: From Fundamental to Industrial Applications. Springer: New York. 2014.
  • Rahman, M. S.; Guizani, N.; Al-Khaseibi, M.; Ali Al-Hinai, S.; Al-Maskri, S. S.; Al-Hamhami, K. Analysis of Cooling Curve to Determine the End Point of Freezing. Food Hydrocolloids. 2002, 16, 653–659. DOI: 10.1016/S0268-005X(02)00031-0.
  • Ribero, G. G.; Rubiolo, A. C.; Zorrilla, S. E. Initial Freezing Point of Mozzarella Cheese. J. Food Eng. 2007, 81, 157–161. DOI: 10.1016/j.jfoodeng.2006.10.017.
  • Liu, B.; Cai, B.; Shen, J. Ice-Temperature Storage Technology of Fruits and Vegetables. In Food Industrial Processes - Methods and Equipment; Benjamin Valdez, Ed.; InTech: London, UK, 2012.
  • Ilicali, C.; Icier, F. Freezing Time Prediction for Partially Dried Papaya Puree with Infinite Cylinder Geometry. J. Food Eng. 2010, 100, 696–704. DOI: 10.1016/j.jfoodeng.2010.05.022.
  • Auleda, J. M.; Raventós, M.; Sánchez, J.; Hernández, E. Estimation of the Freezing Point of Concentrated Fruit Juices for Application in Freeze Concentration. J. Food Eng. 2011, 105, 289–294. DOI: 10.1016/j.jfoodeng.2011.02.035.
  • Arpassorn, S.; Sanguansri, C. Freezing Characteristics and Texture Variation after Freezing and Thawing of Four Fruit Types. Songklanakarin J. Sci. Technol. 2012, 5, 517–523.
  • Tu, J.; Zhang, M.; Xu, B.; Liu, H. Effects of Different Freezing Methods on the Quality and Microstructure of Lotus (Nelumbo Nucifera) Root. Int. J. Refrig. 2015, 52, 59–65. DOI: 10.1016/j.ijrefrig.2014.12.015.
  • Delgado, A. E.; Sun, D.-W. Heat and Mass Transfer Models for Predicting Freezing Processes – a Review. J. Food Eng. 2001, 47, 157–174. DOI: 10.1016/S0260-8774(00)00112-6.
  • Ben Ammar, J.; Lanoisellé, J.-L.; Lebovka, N. I.; Van Hecke, E.; Vorobiev, E. Effect of a Pulsed Electric Field and Osmotic Treatment on Freezing of Potato Tissue. Food Biophysics. 2010, 5, 247–254. DOI: 10.1007/s11483-010-9167-y.
  • Filip, S.; Fink, R.; Jevsnik, M. Influence of Food Composition on Freezing Time. Sanitarno Inzenirstvo. 2010, 4, 4–13.
  • Xu, B.; Zhang, M.; Bhandari, B.; Cheng, X. Influence of Ultrasound-Assisted Osmotic Dehydration and Freezing on the Water State, Cell Structure, and Quality of Radish (Raphanus sativus L.) Cylinders. Drying Techol. 2014, 32, 1803–1811. DOI: 10.1080/07373937.2014.947427.
  • Talens, P.; Escriche, I.; Martı́nez-Navarrete, N.; Chiralt, A. Influence of Osmotic Dehydration and Freezing on the Volatile Profile of Kiwi Fruit. Food Res. Int. 2003, 36, 635–642. DOI: 10.1016/S0963-9969(03)00016-4.
  • Ohnishi, S.; Miyawaki, O. Osmotic Dehydrofreezing for Protection of Rheological Properties of Agricultural Products from Freezing-Injury. Fstr. 2005, 11, 52–58. DOI: 10.3136/fstr.11.52.
  • Xie, J.; Zhao, Y. Use of Vacuum Impregnation to Develop High Quality and Nutritionally Fortified Frozen Strawberries. J. Food Processing Preservation. 2004, 28, 117–132. DOI: 10.1111/j.1745-4549.2004.tb00815.x.
  • Marani, C. M.; Agnelli, M. E.; Mascheroni, R. H. Osmo-Frozen Fruits: Mass Transfer and Quality Evaluation. J. Food Eng. 2007, 79, 1122–1130. DOI: 10.1016/j.jfoodeng.2006.03.022.
  • Wu, L.; Orikasa, T.; Tokuyasu, K.; Shiina, T.; Tagawa, A. Applicability of Vacuum-Dehydrofreezing Technique for the Long-Term Preservation of Fresh-Cut Eggplant: Effects of Process Conditions on the Quality Attributes of the Samples. J. Food Eng. 2009, 91, 560–565. DOI: 10.1016/j.jfoodeng.2008.10.021.
  • Ngapo, T. M.; Babare, I. H.; Reynolds, J.; Mawson, R. F. Freezing and Thawing Rate Effects on Drip Loss from Samples of Pork. Meat Sci. 1999, 53, 149–158. DOI: 10.1016/S0309-1740(99)00050-9.
  • Kristiawan, M.; Sobolik, V.; Klíma, L.; Allaf, K. Effect of Expansion by Instantaneous Controlled Pressure Drop on Dielectric Properties of Fruits and Vegetables. J. Food Eng. 2011, 102, 361–368. DOI: 10.1016/j.jfoodeng.2010.09.014.
  • Mounir, S.; Allaf, T.; Mujumdar, A. S.; Allaf, K. Swell Drying: Coupling Instant Controlled Pressure Drop DIC to Standard Convection Drying Processes to Intensify Transfer Phenomena and Improve Quality—an Overview. Drying. Technol. 2012, 30, 1508–1531. DOI: 10.1080/07373937.2012.693145.
  • Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D. R. Evaluation of the Effects of Different Freezing and Thawing Methods on Color, Polyphenol and Ascorbic Acid Retention in Strawberries (Fragaria × Ananassa Duch.). Food Res. Int. 2012, 48, 241–248. DOI: 10.1016/j.foodres.2012.04.004.
  • Ngo, T.; Wrolstad, R. E.; Zhao, Y. Color Quality of Oregon Strawberries—Impact of Genotype, Composition, and Processing. J. Food Science. 2007, 72, C025–C032. DOI: 10.1111/j.1750-3841.2006.00200.x.
  • Tsami, E.; Katsioti, M. Drying Kinetics for Some Fruits: Predicting of Porosity and Color during Dehydration. Drying Technol. 2000, 18, 1559–1581. DOI: 10.1080/07373930008917793.
  • Radojčin, M. Babić, M.; Babić, L.; Pavkov, I.; Stojanović, Č. Color Parameters Change of Quince during Combined Drying. J. Process. Energy Agri. 2010, 14, 81–84. DOI: 10.1016/S0260-8774(00)00154-0.
  • Maskan, M. Kinetics of Colour Change of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 169–175. DOI: 10.1016/S0260-8774(00)00154-0.
  • Guiné, R.; Barroca, M. Evaluation of Browning Rate of Quince at Ambient Exposure. Presented at the 6th Central European Congress on Food, Novi Sad, Serbia, May 23, 2012.
  • Guiné, R. P. F.; Barroca, M. J. Effect of Drying Treatments on Texture and Color of Vegetables (Pumpkin and Green Pepper). Food Bioprod. Process. 2012, 90, 58–63. DOI: 10.1016/j.fbp.2011.01.003.
  • Aghilinategh, N.; Rafiee, S.; Gholikhani, A.; Hosseinpur, S.; Omid, M.; Mohtasebi, S. S.; Maleki, N. A Comparative Study of Dried Apple Using Hot Air, Intermittent and Continuous Microwave: evaluation of Kinetic Parameters and Physicochemical Quality Attributes. Food Sci. Nutr. 2015, 3, 519–526. DOI: 10.1002/fsn3.241.
  • Aghilinategh, N.; Rafiee, S.; Hosseinpour, S.; Omid, M.; Mohtasebi, S. S. Real-Time Color Change Monitoring of Apple Slices Using Image Processing during Intermittent Microwave Convective Drying. Food Sci. Technol. Int. 2016, 22, 634–646. DOI: 10.1177/1082013216636263.
  • Zhao, J.-H.; Liu, F.; Pang, X.-L.; Xiao, H.-W.; Wen, X.; Ni, Y.-Y. Effects of Different Osmo-Dehydrofreezing Treatments on the Volatile Compounds, Phenolic Compounds and Physicochemical Properties in Mango (Mangifera indica L.). Int. J. Food Sci. Technol. 2016, 51, 1441–1448. DOI: 10.1111/ijfs.13113.
  • Zhao, J.-H.; Hu, R.; Xiao, H.-W.; Yang, Y.; Liu, F.; Gan, Z.-L.; Ni, Y.-Y. Osmotic Dehydration Pretreatment for Improving the Quality Attributes of Frozen Mango: effects of Different Osmotic Solutes and Concentrations on the Samples. Int. J. Food Sci. Technol. 2014, 49, 960–968. DOI: 10.1111/ijfs.12388.
  • Bolin, H. R.; Huxsoll, C. C. Partial Drying of Cut Pears to Improve Freeze/Thaw Texture. J. Food Science. 1993, 58, 357–360. DOI: 10.1111/j.1365-2621.1993.tb04274.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.