Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 9
404
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Fingerprinting study of tuber ultimate compressive strength at different microwave drying times using mid-infrared imaging spectroscopy

, &
Pages 1113-1130 | Received 24 Nov 2017, Accepted 07 Jun 2018, Published online: 02 Jan 2019

References

  • Su, W.-H.; Sun, D.-W. Potential of Hyperspectral Imaging for Visual Authentication of Sliced Organic Potatoes from Potato and Sweet Potato Tubers and Rapid Grading of the Tubers According to Moisture Proportion. Comput. Electron. Agric. 2016, 125, 113–124.
  • Su, W.-H.; Sun, D.-W. Comparative Assessment of Feature-Wavelength Eligibility for Measurement of Water Binding Capacity and Specific Gravity of Tuber Using Diverse Spectral Indices Stemmed from Hyperspectral Images. Comput. Electron. Agric. 2016, 130, 69–82.
  • Chandrasekara, A.; Josheph Kumar, T. Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. Int. J. Food Sci. 2016, 2016, 1.
  • Motsa, N. M.; Modi, A. T.; Mabhaudhi, T. Sweet Potato (Ipomoea batatas L.) as a Drought Tolerant and Food Security Crop. South Afr. J. Sci. 2015, 111, 1–8.
  • Monneveux, P.; Ramírez, D. A.; Pino, M.-T. Drought Tolerance in Potato (S. tuberosum L.): Can We Learn from Drought Tolerance Research in Cereals? Plant Sci. 2013, 205, 76–86.
  • Su, W.-H.; Sun, D.-W. Multivariate Analysis of Hyper/Multi-Spectra for Determining Volatile Compounds and Visualizing Cooking Degree during Low-Temperature Baking of Tubers. Comput. Electron. Agric. 2016, 127, 561–571.
  • Saha, A.; Gupta, R. K.; Tyagi, Y. K. Effects of Edible Coatings on the Shelf Life and Quality of Potato (Solanum tuberosum L.) Tubers During Storage. J. Chem. Pharm. Res. 2014, 6, 802–809.
  • McDonald, K; Sun, D-W; Kenny, T. The Effect of Injection Level on the Quality of a Rapid Vacuum Cooled Cooked Beef Product. J. Food Eng. 2001, 47, 139–147.
  • McDonald, K; Sun, D-W. The Formation of Pores and Their Effects in a Cooked Beef Product on the Efficiency of Vacuum Cooling. J. Food Eng. 2001, 47, 175–183.
  • Hu, ZH; Sun, D-W. CFD Simulation of Heat and Moisture Transfer for Predicting Cooling Rate and Weight Loss of Cooked Ham During Air-Blast Chilling Process. J. Food Eng. 2000, 46, 189–197.
  • Sun, D-W; Eames, IW. Performance Characteristics of HCFC-123 Ejector Refrigeration Cycles. Int. J. Energy Res. 1996, 20, 871–885.
  • Desmond, EM; Kenny, TA; Ward, P; Sun, D-W. Effect of Rapid and Conventional Cooling Methods on the Quality of Cooked Ham Joints. Meat Sci. 2000, 56, 271–277.
  • Kiani, H.; Sun, D.-W.; Delgado, A.; Zhang, Z. Investigation of the Effect of Power Ultrasound on the Nucleation of Water During Freezing of Agar Gel Samples In Tubing Vials. Ultrasonics Sonochem. 2012, 19, 576–581.
  • Ma, J.; Pu, H.; Sun, D.-W.; Gao, W.; Qu, J.-H.; Ma, K.-Y. Application of Vis-NIR Hyperspectral Imaging in Classification between Fresh and Frozen-thawed Pork Longissimus Dorsi Muscles. Int. J. Refrigerat.-Revue Internationale Du Froid. 2015, 50, 10–18.
  • Xie, A.; Sun, D.-W.; Xu, Z.; Zhu, Z. Rapid Detection of Frozen Pork Quality without Thawing by Vis-NIR Hyperspectral Imaging Technique. Talanta. 2015, 139, 208–215.
  • Cheng, J.-H.; Sun, D.-W.; Pu, H. Combining the Genetic Algorithm and Successive Projection Algorithm for the Selection of Feature Wavelengths to Evaluate Exudative Characteristics in Frozen-thawed Fish Muscle. Food Chem. 2016, 197, 855–863.
  • Pu, H; Sun, D.-W.; Ma, J.; Cheng, J.-H.. Classification of Fresh and Frozen-thawed Pork Muscles using Visible and Near Infrared Hyperspectral Imaging and Textural Analysis. Meat Sci. 2015, 99, 81–88.
  • Cheng, L.; Sun, D.-W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57, 769–781.
  • Xie, A.; Sun, D.-W.; Zhu, Z.; Pu, H. Nondestructive Measurements of Freezing Parameters of Frozen Porcine Meat by NIR Hyperspectral Imaging. Food Bioprocess Technol. 2016, 9, 1444–1454.
  • Qu, J.-H.; Sun, D.-W.; Cheng, J.-H.; Pu, Hongbin. Mapping Moisture Contents in Grass Carp (Ctenopharyngodon idella) Slices Under Different Freeze Drying Periods by Vis-NIR Hyperspectral Imaging. LWT-Food Sci. Technol. 2017, 75, 529–536.
  • Cheng, W.; Sun, D.-W.; Pu, H.; Wei, Q. Characterization of Myofibrils Cold Structural Deformation Degrees of Frozen Pork Using Hyperspectral Imaging Coupled with Spectral Angle Mapping Algorithm. Food Chem. 2018, 239, 1001–1008.
  • Sun, DW; Woods, JL. Low-temperature Moisture Transfer Characteristics of Barley - Thin-layer Models and Equilibrium Isotherms. J. Agricult. Eng. Res. 1994, 59, 273–283.
  • Sun, DW; Woods, JL. The Selection of Sorption Isotherm Equations for Wheat-based on the Fitting of Available Data. J. Stored Prod. Res. 1994, 30, 27–43.
  • Sun, DW; Woods, JL. Low-temperature Moisture Transfer Characteristics of Wheat in Thin-layers. Transact. ASAE. 1994, 37, 1919–1926.
  • Sun, DW; Woods, JL. The Moisture-content Relative-humidity Equilibrium Relationship of Wheat – a Review. Drying Technol. 1993, 11, 1523–1551.
  • Yang, Q.; Sun, D.-W.; Cheng, W. Development of Simplified Models for Nondestructive Hyperspectral Imaging Monitoring of TVB-N Contents in Cured Meat During Drying Process. J. Food Eng. 2017, 192, 53–60.
  • Pu, Y.-Y.; Sun, D.-W. Prediction of Moisture Content Uniformity of Microwave-vacuum Dried Mangoes as Affected by Different Shapes using NIR Hyperspectral Imaging. Innovat. Food Sci. Emerg. Technol. 2016, 33, 348–356.
  • Qu, J.-H.; Sun, D.-W.; Cheng, J.-H.; Pu, H. Mapping Moisture Contents in Grass Carp (Ctenopharyngodon idella) Slices Under Different Freeze Drying Periods by Vis-NIR Hyperspectral Imaging By:, LWT-Food Sci. Technol. 2017, 75, 529–536.
  • Ma, J.; Sun, D.-W.; Qu, J.-H.; Pu, H. Prediction of Textural Changes in Grass Carp Fillets as Affected by Vacuum Freeze Drying using Hyperspectral Imaging Based on Integrated Group Wavelengths. LWT-Food Sci. Technol. 2017, 82, 377–385.
  • Pu, Y.-Y.; Sun, D.-W. Combined Hot-air and Microwave-vacuum Drying for Improving Drying Uniformity of Mango Slices Based on Hyperspectral Imaging Visualisation of Moisture Content Distribution. Biosyst. Eng. 2017, 156, 108–119.
  • Wang, J.; Fang, X.-M.; Mujumdar, A.; Qian, J.-Y.; Zhang, Q.; Yang, X.-H.; Liu, Y.-H.; Gao, Z.-J.; Xiao, H.-W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) on Drying and Quality of Red Pepper (Capsicum Annuum L.). Food Chem. 2017, 220, 145–152.
  • Wang, J.; Yang, X.-H.; Mujumdar, A.; Wang, D.; Zhao, J.-H.; Fang, X.-M.; Zhang, Q.; Xie, L.; Gao, Z.-J.; Xiao, H.-W. Effects of Various Blanching Methods on Weight Loss, Enzymes Inactivation, Phytochemical Contents, Antioxidant Capacity, Ultrastructure and Drying Kinetics of Red Bell Pepper (Capsicum Annuum L.). LWT-Food Sci. Technol. 2017, 77, 337–347.
  • Deng, L.-Z.; Mujumdar, A. S.; Zhang, Q.; Yang, X.-H.; Wang, J.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes – A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 1–25.
  • Deng, L.-Z.; Mujumdar, A.; Yang, X.-H.; Wang, J.; Zhang, Q.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. High Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Rate and Softens Texture of Apricot via Cell Wall Pectin Polysaccharides Degradation and Ultrastructure Modification. Food Chem. 2018, 261, 292–300.
  • Deng, L.-Z.; Yang, X.-H.; Mujumdar, A.; Zhao, J.-H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.-J.; Xiao, H.-W. Red Pepper (Capsicum Annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Drying Technol. 2018, 36, 893–907.
  • Wang, J.; Law, C.-L.; Nema, P. K.; Zhao, J.-H.; Liu, Z.-L.; Deng, L.-Z.; Gao, Z.-J.; Xiao, H.-W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138.
  • Wang, J.; Yang, X.-H.; Mujumdar, A. S.; Fang, X.-M.; Zhang, Q.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Effects of High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment on the Change of Antioxidant Capacity, the Degradation Kinetics of Red Pigment, Ascorbic Acid in Dehydrated Red Peppers During Storage. Food Chem. 2018, 259, 65–72.
  • Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. Effect of Convective and Vacuum–microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food Bioprocess Technol. 2014, 7(3), 829–841.
  • Arikan, M. F., Ayhan, Z., Soysal, Y., & Esturk, O. Drying Characteristics and Quality Parameters of Microwave-dried Grated Carrots. Food Bioprocess Technol. 2012, 5(8), 3217–3229.
  • Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of Drying Conditions on the Quality of Vacuum-Microwave Dried Potato Cubes. J. Food Eng. 2007, 81, 306–312.
  • Bouraoui, M.; Richard, P.; Durance, T. Microwave and Convective Drying of Potato Slices. J. Food Process Eng. 1994, 17, 353–363.
  • Raghavan, G.; Silveira, A. Shrinkage Characteristics of Strawberries Osmotically Dehydrated in Combination with Microwave Drying. Drying Technol. 2001, 19, 405–414.
  • Dadalı, G.; Kılıç Apar, D.; Özbek, B. Microwave Drying Kinetics of Okra. Drying Technol. 2007, 25, 917–924.
  • Mousa, N.; Farid, M. Microwave Vacuum Drying of Banana Slices. Drying Technol. 2002, 20, 2055–2066.
  • Tulasidas, T. Combined Convective and Microwave Drying of Grapes. Drying Technol. 1995, 13, 1029–1031.
  • Cui, Z.-W.; Xu, S.-Y.; Sun, D.-W. Dehydration of Garlic Slices by Combined Microwave-Vacuum and Air Drying. Drying Technol. 2003, 21, 1173–1184.
  • Huang, B.; Wang, G.; Chu, Z.; Qin, L. Effect of Oven Drying, Microwave Drying, and Silica Gel Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Drying Technol. 2012, 30, 248–255.
  • Pei, F., Yang, W. J., Shi, Y., Sun, Y., Mariga, A. M., Zhao, L. Y., … & Hu, Q. H. Comparison of Freeze-drying with Three Different Combinations of Drying Methods and their Influence on Colour, Texture, Microstructure and Nutrient Retention of Button Mushroom (Agaricus Bisporus) Slices. Food Bioprocess Technol. 2014, 7(3), 702–710.
  • Wang, Y., Zhang, M., Mujumdar, A. S., & Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices—Effect on Product Quality. Food Bioprocess Technol. 2013, 6(12), 3530–3543.
  • Mujumdar, A. S., & Law, C. L. Drying Technology: Trends and Applications in Postharvest Processing. Food Bioprocess Technol. 2010, 3(6), 843–852.
  • Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. Effect of Convective and Vacuum–microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food Bioprocess Technol. 2014, 7(3), 829–841.
  • Cao, X.; Zhang, M.; Fang, Z.; Mujumdar, A. S.; Jiang, H.; Qian, H.; Ai, H. Drying Kinetics and Product Quality of Green Soybean Under Different Microwave Drying Methods. Drying Technol. 2017, 35, 240–248.
  • Zhao, Y.; Wang, W.; Xie, J.; Zheng, B.; Miao, S.; Lo, Y. M.; Zheng, Y.; Zhuang, W.; Tian, Y. Microwave Vacuum Drying of Lotus Seeds: Effect of a Single-Stage Tempering Treatment on Drying Characteristics, Moisture Distribution, and Product Quality. Drying Technol. 2017, 35, 1561–1570.
  • Hu, X.; Kurian, J.; Gariepy, Y.; Raghavan, V. Optimization of Microwave-Assisted Fluidized-Bed Drying of Carrot Slices. Drying Technol. 2017, 35, 1234–1248.
  • Deepika, S.; Sutar, P. Combining Osmotic–Steam Blanching with Infrared–Microwave–Hot Air Drying: Production of Dried Lemon (Citrus limon L.) Slices and Enzyme Inactivation. Drying Technol. 2018, 1–19.
  • Zielinska, M.; Sadowski, P.; Błaszczak, W. Combined Hot Air Convective Drying and Microwave-Vacuum Drying of Blueberries (Vaccinium corymbosum L.): Drying Kinetics and Quality Characteristics. Drying Technol. 2016, 34, 665–684.
  • Krokida, M.; Maroulis, Z. Effect of Microwave Drying on Some Quality Properties of Dehydrated Products. Drying Technol. 1999, 17, 449–466.
  • Rodríguez-García, J., Laguna, L., Puig, A., Salvador, A., & Hernando, I. Effect of Fat Replacement by Inulin on Textural and Structural Properties of Short Dough Biscuits. Food Bioprocess Technol. 2013, 6(10), 2739–2750.
  • Loredo, A. B. G., Guerrero, S. N., Gomez, P. L., & Alzamora, S. M. Relationships between Rheological Properties, Texture and Structure of Apple (Granny Smith var.) Affected by Blanching and/or Osmotic Dehydration. Food Bioprocess Technol. 2013, 6(2), 475–488.
  • Loredo, A. B. G., Guerrero, S. N., & Alzamora, S. M. Relationships between Texture and Rheological Properties in Blanched Apple Slices (var. Granny Smith) Studied by Partial Least Squares Regression. Food Bioprocess Technol. 2014, 7(10), 2840–2854.
  • Vicente, S., Nieto, A. B., Hodara, K., Castro, M. A., & Alzamora, S. M. Changes in Structure, Rheology, and Water Mobility of Apple Tissue Induced by Osmotic Dehydration with Glucose or Trehalose. Food Bioprocess Technol. 2012, 5(8), 3075–3089.
  • Zdunek, A., Kozioł, A., Pieczywek, P. M., & Cybulska, J. Evaluation of the Nanostructure of Pectin, Hemicellulose and Cellulose in the Cell Walls of Pears of Different Texture and Firmness. Food Bioprocess Technol. 2014, 7(12), 3525–3535.
  • Su, W.-H.; Bakalis, S.; Sun, D.-W. Fourier Transform Mid-Infrared-Attenuated Total Reflectance (FTMIR-ATR) Microspectroscopy for Determining Textural Property of Microwave Baked Tuber. J. Food Eng. 2018, 218, 1–13.
  • Szczesniak, A. S. Texture Is a Sensory Property. Food Qual. Prefer. 2002, 13, 215–225.
  • Kita, A. The Influence of Potato Chemical Composition on Crisp Texture. Food Chem. 2002, 76, 173–179.
  • Su, W.-H.; Sun, D.-W. Chemical Imaging for Measuring the Time Series Variations of Tuber Dry Matter and Starch Concentration. Comput. Electron. Agric. 2017, 140, 361–373.
  • Kim, Y. S.; Wiesenborn, D. P.; Grant, L. A. Pasting and Thermal Properties of Potato and Bean Starches. Starch-Stärke 1997, 49, 97–102.
  • Alvarez, M. D.; Canet, W. Rheological Characterization of Fresh and Cooked Potato Tissues (Cv. Monalisa). Zeitschrift Für Lebensmitteluntersuchung Und-Forschung A 1998, 207, 55–65.
  • Sun, D.-W. Handbook of Frozen Food Processing and Packaging; CRC Press: Boca Raton, 2016.
  • Bargale, P. C.; Irudayaraj, J. Mechanical Strength and Rheological Behaviour of Barley Kernels. Int. J. Food Sci. Technol. 2007, 30, 609–623.
  • Bajpai, S.; Bajpai, M.; Sharma, L. Investigation of Water Uptake Behavior and Mechanical Properties of Superporous Hydrogels. J. Macromol. Sci. Part A: Pure Appl. Chem. 2006, 43, 507–524.
  • Davies, H.; Dixon, N. Evaluation of Potato Texture by Taste and by Appearance. Am. J. Potato Res. 1976, 53, 205–210.
  • Simkin, A.; Leichter, I.; Swissa, A.; Samueloff, S. The Effect of Swimming Activity on Bone Architecture in Growing Rats. J. Biomech. 1989, 22, 845–851.
  • Berthaume, M. A. Food Mechanical Properties and Dietary Ecology. Am. J. Phys. Anthropol. 2016, 159, 79–104.
  • Baietto, M.; Wilson, A. D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors (Basel) 2015, 15, 899–931.
  • Patel, K. K.; Kar, A.; Jha, S.; Khan, M. Machine Vision System: A Tool for Quality Inspection of Food and Agricultural Products. J. Food Sci. Technol. 2012, 49, 123–141.
  • Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718.
  • ElMasry, G.; Nagai, H.; Moria, K.; Nakazawa, N.; Tsuta, M.; Sugiyama, J.; Okazaki, E.; Nakauchi, S. Freshness Estimation of Intact Frozen Fish Using Fluorescence Spectroscopy and Chemometrics of Excitation–Emission Matrix. Talanta. 2015, 143, 145–156.
  • Bao, Y.; Liu, F.; Kong, W.; Sun, D.-W.; He, Y.; Qiu, Z. Measurement of Soluble Solid Contents and pH of White Vinegars Using VIS/NIR Spectroscopy and Least Squares Support Vector Machine. Food Bioprocess Technol. 2014, 7, 54–61.
  • Chen, Z.; Zhang, Z.; Zhu, R.; Xiang, Y.; Yang, Y.; Harrington, P. B. Application of Terahertz Time-Domain Spectroscopy Combined with Chemometrics to Quantitative Analysis of Imidacloprid in Rice Samples. J. Quant. Spectrosc. Radiat. Transf. 2015, 167, 1–9.
  • Ohtsuki, T.; Sato, K.; Sugimoto, N.; Akiyama, H.; Kawamura, Y. Absolute Quantification for Benzoic Acid in Processed Foods Using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy. Talanta. 2012, 99, 342–348.
  • Cheng, S.; Zhang, T.; Yao, L.; Wang, X.; Song, Y.; Wang, H.; Wang, H.; Tan, M. Use of Low-Field-NMR and MRI to Characterize Water Mobility and Distribution in Pacific Oyster (Crassostrea gigas) During Drying Process. Drying Technol. 2018, 36, 630–636.
  • Wang, J.; Mu, W.-S.; Fang, X.-M.; Mujumdar, A.; Yang, X.-H.; Xue, L.-Y.; Xie, L.; Xiao, H.-W.; Gao, Z.-J.; Zhang, Q. Pulsed Vacuum Drying of Thompson Seedless Grape: Effects of Berry Ripeness on Physicochemical Properties and Drying Characteristic. Food Bioprod. Process. 2017, 106, 117–126.
  • Wang, J.; Mujumdar, A. S.; Deng, L.-Z.; Gao, Z.-J.; Xiao, H.-W.; Raghavan, G. High-Humidity Hot Air Impingement Blanching Alters Texture, Cell-Wall Polysaccharides, Water Status and Distribution of Seedless Grape. Carbohydr. Polym. 2018, 194, 9–17.
  • Rao, W.; Wang, Z.; Shen, Q.; Li, G.; Song, X.; Zhang, D. LF-NMR to Explore Water Migration and Water–Protein Interaction of Lamb Meat Being Air-Dried at 35 °C. Drying Technol. 2018, 36, 366–373.
  • Mao, H.; Wang, F.; Mao, F.; Chi, Y.; Lu, S.; Cen, K. Measurement of Water Content and Moisture Distribution in Sludge by 1H Nuclear Magnetic Resonance Spectroscopy. Drying Technol. 2016, 34, 267–274.
  • Jackman, P.; Sun, D.-W.; Du, C.-J.; Paul, A. Prediction of Beef Eating Qualities from Colour, Marbling and Wavelet Surface Texture Features using Homogenous Carcass Treatment. Pattern Recogn. 2009, 42, 751–763.
  • Sun, D-W. Computer Vision – an Objective, Rapid and Non-contact Quality Evaluation Tool for the Food Industry. J. Food Eng. 2004, 61, 1–2.
  • Du, CJ; Sun, D-W. Pizza Sauce Spread Classification using Colour Vision and Support Vector Machines. J. Food Eng. 2005, 66, 137–145.
  • Sun, D-W; Brosnan, T. Pizza Quality Evaluation using Computer Vision – Part 2 – Pizza Topping Analysis. J. Food Eng. 2003, 57, 91–95.
  • Jackman, P.; Sun, D.-W.; Allen, P. Recent Advances in the Use of Computer Vision Technology in the Quality Assessment of Fresh Meats. Trends Food Sci. Technol. 2011, 22, 185–197.
  • Xu, J.-L.; Riccioli, C.; Sun, D.-W. Comparison of Hyperspectral Imaging and Computer Vision for Automatic Differentiation of Organically and Conventionally Farmed Salmon. J. Food Eng. 2017, 196, 170–182.
  • Xu, J.-L.; Sun, D.-W. Identification of Freezer Burn on Frozen Salmon Surface using Hyperspectral Imaging and Computer Vision Combined with Machine Learning Algorithm. Int. J. Refrigerat.-Revue Internationale Du Froid. 2017, 74, 151–164.
  • Razmjooy, N.; Mousavi, B. S.; Soleymani, F. A Real-Time Mathematical Computer Method for Potato Inspection Using Machine Vision. Comput. Math. Appl. 2012, 63, 268–279.
  • Pedreschi, F.; Leon, J.; Mery, D.; Moyano, P. Development of a Computer Vision System to Measure the Color of Potato Chips. Food Res. Int. 2006, 39, 1092–1098.
  • Brosnan, T.; Sun, D.-W. Inspection and Grading of Agricultural and Food Products by Computer Vision Systems – A Review. Comput. Electron. Agric. 2002, 36, 193–213.
  • Karoui, R., & Blecker, C. Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—a Review. Food Bioprocess Technol. 2011, 4(3), 364–386.
  • Lu, X., Al-Qadiri, H. M., Lin, M., & Rasco, B. A. Application of Mid-infrared and Raman Spectroscopy to the Study of Bacteria. Food Bioprocess Technol. 2011, 4(6), 919–935.
  • Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J., Saeys, W., & Nicolaï, B. NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit—a Review. Food Bioprocess Technol. 2012, 5(2), 425–444.
  • Klaypradit, W., Kerdpiboon, S., & Singh, R. K. Application of Artificial Neural Networks to Predict the Oxidation of Menhaden Fish Oil Obtained from Fourier Transform Infrared Spectroscopy Method. Food Bioprocess Technol. 2011, 4(3), 475–480.
  • Woodcock, T., Fagan, C. C., O’Donnell, C. P., & Downey, G. Application of Near and Mid-infrared Spectroscopy to Determine Cheese Quality and Authenticity. Food Bioprocess Technol. 2008, 1(2), 117–129.
  • Wu, D.; He, Y.; Feng, S.; Sun, D.-W. Study on Infrared Spectroscopy Technique for Fast Measurement of Protein Content in Milk Powder Based on LS-SVM. J. Food Eng. 2008, 84, 124–131.
  • Su, W.-H.; He, H.-J.; Sun, D.-W. Non-Destructive and Rapid Evaluation of Staple Foods Quality by Using Spectroscopic Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1039–1051.
  • Sun, D.-W. Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: Burlington, USA, 2009.
  • Liu, F., He, Y., Wang, L., & Sun, G. Detection of Organic Acids and pH of Fruit Vinegars using Near-infrared Spectroscopy and Multivariate Calibration. Food Bioprocess Technol. 2011, 4(8), 1331–1340.
  • Antonucci, F., Pallottino, F., Paglia, G., Palma, A., D’Aquino, S., & Menesatti, P. Non-destructive Estimation of Mandarin Maturity Status through Portable VIS-NIR Spectrophotometer. Food Bioprocess Technol. 2011, 4(5), 809–813.
  • Abdel-Nour, N., Ngadi, M., Prasher, S., & Karimi, Y. Prediction of Egg Freshness and Albumen Quality using Visible/near Infrared Spectroscopy. Food Bioprocess Technol. 2011, 4(5), 731–736.
  • Shao, Y., & He, Y. Measurement of Soluble Solids Content and pH of Yogurt using Visible/near Infrared Spectroscopy and Chemometrics. Food Bioprocess Technol. 2009, 2(2), 229–233.
  • Liu, D., Sun, D. W., & Zeng, X. A. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food Bioprocess Technol. 2014, 7(2), 307–323.
  • Zhu, F., Zhang, D., He, Y., Liu, F., & Sun, D. W. Application of Visible and near Infrared Hyperspectral Imaging to Differentiate between Fresh and Frozen–thawed Fish Fillets. Food Bioprocess Technol. 2013, 6(10), 2931–2937.
  • Su, W. H.; Sun, D. W. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239.
  • ElMasry, Garnal; Sun, Da-Wen; Allen, Paul. Chemical-free Assessment and Mapping of Major Constituents in Beef using Hyperspectral Imaging. J. Food Eng. 2013, 117, 235–246.
  • Cheng, J.-H.; Sun, D.-W. Rapid and Non-invasive Detection of Fish Microbial Spoilage by Visible and Near Infrared Hyperspectral Imaging and Multivariate Analysis. LWT-Food Sci. Technol. 2015, 62, 1060–1068.
  • Xiong, Z.; Sun, D.-W.; Pu, H.; Xie, A.; Han, Z.; Luo, Man. Non-destructive Prediction of Thiobarbituric Acid Reactive Substances (TSARS) Value for Freshness Evaluation of Chicken Meat using Hyperspectral Imaging. Food Chem. 2015, 179, 175–181.
  • Cheng, J.-H.; Sun, D.-W.; Pu, H.; Zhu, Z. Development of Hyperspectral Imaging Coupled with Chemometric Analysis to Monitor K Value for Evaluation of Chemical Spoilage in Fish Fillets. Food Chem. 2015, 185, 245–253.
  • Pu, H.; Kamruzzaman, M.; Sun, D.-W.. Selection of Feature Wavelengths for Developing Multispectral Imaging Systems for Quality, Safety and Authenticity of Muscle Foods-a Review. Trend. Food Sci. Technol. 2015, 45, 86–104.
  • Ma, J.; Sun, D.-W.; Pu, H. Spectral Absorption Index in Hyperspectral Image Analysis for Predicting Moisture Contents in Pork Longissimus Dorsi Muscles. Food Chem. 2016, 197, 848–854.
  • Cheng, J.-H.; Sun, D.-W.; Qu, J.-H.; Pu, H.-B.; Zhang, X.-C.; Song, Z.; Chen, X.; Zhang, H. Developing a Multispectral Imaging for Simultaneous Prediction of Freshness Indicators During Chemical Spoilage of Grass Carp Fish Fillet. J. Food Eng. 2016, 182, 9–17.
  • Cheng, J.-H.; Sun, D.-W. Partial Least Squares Regression (PLSR) Applied to NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish Muscle By: , Food Eng. Rev.. 2017, 9, 36–49.
  • Li, J.-L.; Sun, D.-W.; Pu, H.; Jayas, D. S. Determination of Trace Thiophanate-methyl and its Metabolite Carbendazim with Teratogenic Risk in Red Bell Pepper (Capsicumannuum L.) by Surface-enhanced Raman Imaging Technique. Food Chem. 2017, 218, 543–552.
  • Xu, J.-L.; Riccioli, C.; Sun, D.-W. Development of an Alternative Technique for Rapid and Accurate Determination of Fish Caloric Density Based on Hyperspectral Imaging. J. Food Eng. 2016, 190, 185–194.
  • Cheng, J.-H.; Sun, D.-W.; Pu, Hong-Bin; Wang, Qi-Jun, Chen, Yu-Nan. Suitability of Hyperspectral Imaging for Rapid Evaluation of Thiobarbituric Acid (TBA) Value in Grass Carp (Ctenopharyngodon idella) Fillet. Food Chem. 2015, 171, 258–265.
  • Pu, H.; Xie, A.; Sun, D.-W.; Kamruzzaman, M.; Ma, J. Application of Wavelet Analysis to Spectral Data for Categorization of Lamb Muscles. Food Bioprocess Technol. 2015, 8, 1–16
  • Dai, Q.; Cheng, J.-H.; Sun, D.-W.; Zhu, Z.; Pu, H. Prediction of Total Volatile Basic Nitrogen Contents using Wavelet Features from Visible/near-infrared Hyperspectral Images of Prawn (Metapenaeus ensis). Food Chem. 2016, 197, 257–265.
  • Cheng, W.; Sun, D.-W.; Cheng, J.-H. Pork Biogenic Amine Index (BAI) Determination Based on Chemometric Analysis of Hyperspectral Imaging Data. LWT-Food Sci. Technol. 2016, 73, 13–19.
  • Pu, H.; Liu, D.; Wang, L.; Sun, D.-W. Soluble Solids Content and pH Prediction and Maturity Discrimination of Lychee Fruits Using Visible and Near Infrared Hyperspectral Imaging. Food Analyt. Meth. 2016, 9, 235–244.
  • Cheng, J.-H.; Sun, D.-W. Partial Least Squares Regression (PLSR) Applied to NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish Muscle. Food Eng. Rev. 2017, 9, 36–49.
  • Largo-Gosens, A.; Hernández-Altamirano, M.; García-Calvo, L.; Alonso-Simòn, A.; Álvarez, J.; Acebes, J. L. Fourier Transform Mid Infrared Spectroscopy Applications for Monitoring the Structural Plasticity of Plant Cell Walls. Front. Plant Sci. 2014, 5, 1–15.
  • Türker-Kaya, S.; Huck, C. W. A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis. Molecules. 2017, 22, 168.
  • Fackler, K.; Stevanic, J. S.; Ters, T.; Hinterstoisser, B.; Schwanninger, M.; Salmén, L. Localisation and Characterisation of Incipient Brown-Rot Decay within Spruce Wood Cell Walls Using FT-IR Imaging Microscopy. Enzyme Microb. Technol. 2010, 47, 257–267.
  • Trollope, K. M.; Volschenk, H.; Görgens, J. F.; Bro, R.; Nieuwoudt, H. H. Direct, Simultaneous Quantification of Fructooligosaccharides by FT-MIR ATR Spectroscopy and Chemometrics for Rapid Identification of Superior, Engineered β-Fructofuranosidases. Anal. Bioanal. Chem. 2015, 407, 1661–1671.
  • Stuart, B. Infrared Spectroscopy; Wiley Online Library: New York, 2005.
  • Beck, S. M.; Knoerzer, K.; Arcot, J. Effect of Low Moisture Extrusion on a Pea Protein Isolate’s Expansion, Solubility, Molecular Weight Distribution and Secondary Structure as Determined by Fourier Transform Infrared Spectroscopy (FTIR). J. Food Eng. 2017, 214, 166–174.
  • Czaja, T.; Kuzawińska, E.; Sobota, A.; Szostak, R. Determining Moisture Content in Pasta by Vibrational Spectroscopy. Talanta. 2018, 178, 294–298.
  • Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J. M.; Heredia, F. J.; Byrne, H. J. Linking ATR-FTIR and Raman Features to Phenolic Extractability and Other Attributes in Grape Skin. Talanta. 2017, 167, 44–50.
  • Das, C.; Chakraborty, S.; Acharya, K.; Bera, N. K.; Chattopadhyay, D.; Karmakar, A.; Chattopadhyay, S. FT-MIR Supported Electrical Impedance Spectroscopy Based Study of Sugar Adulterated Honeys from Different Floral Origin. Talanta. 2017, 171, 327–334.
  • Nair, R.; Venkatesh, S.; Athmaselvi, K.; Thakur, S. Rapid Estimation and Quantification of Sucrose Content in Fruit Juices Using Fourier Transform Infrared–Attenuated Total Reflectance (FTIR–ATR) Spectroscopy. Food Measure. 2016, 10, 24–31.
  • Anbinder, P. S.; Peruzzo, P. J.; Martino, M. N.; Amalvy, J. I. Effect of Antioxidant Active Films on the Oxidation of Soybean Oil Monitored by Fourier Transform Infrared Spectroscopy. J. Food Eng. 2015, 151, 43–50.
  • Woess, C.; Unterberger, S. H.; Roider, C.; Ritsch-Marte, M.; Pemberger, N.; Cemper-Kiesslich, J.; Hatzer-Grubwieser, P.; Parson, W.; Pallua, J. D. Assessing Various Infrared (IR) Microscopic Imaging Techniques for Post-Mortem Interval Evaluation of Human Skeletal Remains. PLoS One 2017, 12, e0174552.
  • Cao, X.; Loussaert, J. A.; Wen, Z.-Q. Microspectroscopic Investigation of the Membrane Clogging during the Sterile Filtration of the Growth Media for Mammalian Cell Culture. J. Pharm. Biomed. Anal. 2016, 119, 10–15.
  • Bhargava, R.; Levin, I.W. Spectrochemical Analysis Using Infrared Multichannel Detectors; Wiley: Oxford, UK, 2008.
  • Lu, X.; Rasco, B. A. Determination of Antioxidant Content and Antioxidant Activity in Foods Using Infrared Spectroscopy and Chemometrics: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 853–875.
  • Hu, M.-H.; Dong, Q.-L.; Liu, B.-L.; Opara, U. L.; Chen, L. Estimating Blueberry Mechanical Properties Based on Random Frog Selected Hyperspectral Data. Postharvest Biol. Technol. 2015, 106, 1–10.
  • Leiva-Valenzuela, G. A.; Lu, R.; Aguilera, J. M. Prediction of Firmness and Soluble Solids Content of Blueberries Using Hyperspectral Reflectance Imaging. J. Food Eng. 2013, 115, 91–98.
  • Ouyang, Q., Chen, Q., Zhao, J., & Lin, H. Determination of Amino Acid Nitrogen in Soy Sauce using Near Infrared Spectroscopy Combined with Characteristic Variables Selection and Extreme Learning Machine. Food Bioprocess Technol. 2013, 6(9), 2486–2493.
  • Su, W. H., & Sun, D. W. Evaluation of Spectral Imaging for Inspection of Adulterants in Terms of Common Wheat Flour, Cassava Flour and Corn Flour in Organic Avatar Wheat (Triticum spp.) Flour. J. Food Eng. 2017, 200, 59–69.
  • Su, W.-H.; Sun, D.-W.; He, J.-G.; Zhang, L.-B. Variation Analysis in Spectral Indices of Volatile Chlorpyrifos and Non-Volatile Imidacloprid in Jujube (Ziziphus jujuba Mill.) Using near-Infrared Hyperspectral Imaging (NIR-HSI) and Gas Chromatograph-Mass Spectrometry (GC–MS). Comput. Electron. Agric. 2017, 139, 41–55.
  • Leardi, R.; Seasholtz, M. B.; Pell, R. J. Variable Selection for Multivariate Calibration Using a Genetic Algorithm: Prediction of Additive Concentrations in Polymer Films from Fourier Transform-Infrared Spectral Data. Anal. Chim. Acta 2002, 461, 189–200.
  • Su, W.-H.; Sun, D.-W. Facilitated Wavelength Selection and Model Development for Rapid Determination of the Purity of Organic Spelt (Triticum spelta L.) Flour Using Spectral Imaging. Talanta. 2016, 155, 347–357.
  • DesLauriers, P. J.; Rohlfing, D. C.; Hsieh, E. T. Quantifying Short Chain Branching Microstructures in Ethylene 1-Olefin Copolymers Using Size Exclusion Chromatography and Fourier Transform Infrared Spectroscopy (SEC–FTIR). Polymer 2002, 43, 159–170.
  • Goormaghtigh, E.; Ruysschaert, J.-M.; Raussens, V. Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination. Biophys. J. 2006, 90, 2946–2957.
  • Mahesh, S., Jayas, D. S., Paliwal, J., & White, N. D. G. Comparison of Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR) Methods for Protein and Hardness Predictions using the Near-Infrared (NIR) Hyperspectral Images of Bulk Samples of Canadian Wheat. Food Bioprocess Technol. 2015, 8(1), 31–40.
  • Chang, C. W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. Near-infrared Reflectance Spectroscopy–principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65(2), 480–490.
  • De Maesschalck, R.; Estienne, F.; Verdú-Andrés, J.; Candolfi, A.; Centner, V.; Despagne, F.; Jouan-Rimbaud, D.; Walczak, B.; Massart, D.; De Jong, S. The Development of Calibration Models for Spectroscopic Data Using Principal Component Regression. Internet J. Chem. 1999, 2, 1.
  • Kumar, N.; Bansal, A.; Sarma, G.; Rawal, R. K. Chemometrics Tools Used in Analytical Chemistry: An Overview. Talanta. 2014, 123, 186–199.
  • Su, W.-H.; Sun, D.-W. Evaluation of Spectral Imaging for Inspection of Adulterants in Terms of Common Wheat Flour, Cassava Flour and Corn Flour in Organic Avatar Wheat (Triticum spp.) Flour. J. Food Eng. 2017, 200, 59–69.
  • Bro, R.; Smilde, A. K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831.
  • Azira, T. N.; Man, Y. C.; Hafidz, R. R. M.; Aina, M.; Amin, I. Use of Principal Component Analysis for Differentiation of Gelatine Sources Based on Polypeptide Molecular Weights. Food Chem. 2014, 151, 286–292.
  • Destefanis, G.; Barge, M.; Brugiapaglia, A.; Tassone, S. The Use of Principal Component Analysis (PCA) to Characterize Beef. Meat Sci. 2000, 56, 255–259.
  • Choi, D.-J.; Park, H. A Hybrid Artificial Neural Network as a Software Sensor for Optimal Control of a Wastewater Treatment Process. Water Res. 2001, 35, 3959–3967.
  • Wehrens, R.; Mevik, B.-H. The Pls Package: Principal Component and Partial Least Squares Regression in R. J. Stat. Softw. 2007, 18, 1–24.
  • Wentzell, P. D.; Montoto, L. V. Comparison of Principal Components Regression and Partial Least Squares Regression through Generic Simulations of Complex Mixtures. Chemom. Intell. Lab. Syst. 2003, 65, 257–279.
  • Şahin, S.; Demir, C.; Güçer, Ş. Simultaneous UV–Vis Spectrophotometric Determination of Disperse Dyes in Textile Wastewater by Partial Least Squares and Principal Component Regression. Dyes Pigm. 2007, 73, 368–376.
  • Basak, D.; Pal, S.; Patranabis, D. C. Support Vector Regression. Neural Inform. Process. Lett. Rev. 2007, 11, 203–224.
  • Akande, K. O.; Owolabi, T. O.; Twaha, S.; Olatunji, S. O. Performance Comparison of SVM and ANN in Predicting Compressive Strength of Concrete. IOSR J. Comput. Eng. 2014, 16, 88–94.
  • Aboutaleb, S.; Behnia, M.; Bagherpour, R.; Bluekian, B. Using Non-Destructive Tests for Estimating Uniaxial Compressive Strength and Static Young’s Modulus of Carbonate Rocks via Some Modeling Techniques. Bull. Eng. Geol. Environ. 2017, 1–12.
  • Poitier, K.; Cho, S. Estimation of True Efficient Frontier of Organisational Performance Using Data Envelopment Analysis and Support Vector Machine Learning. IJIDS 2011, 3, 148–172.
  • Javed, F.; Savkin, A. V.; Chan, G. S.; Middleton, P. M.; Malouf, P.; Steel, E.; Mackie, J.; Lovell, N. H. Assessing the Blood Volume and Heart Rate Responses during Haemodialysis in Fluid Overloaded Patients Using Support Vector Regression. Physiol. Meas. 2009, 30, 1251.
  • Kvalheim, O. M. Latent-Structure Decompositions (Projections) of Multivariate Data. Chemom. Intell. Lab. Syst. 1987, 2, 283–290.
  • Nguyen, H. T.; Lee, B.-W. Assessment of Rice Leaf Growth and Nitrogen Status by Hyperspectral Canopy Reflectance and Partial Least Square Regression. Eur. J. Agron. 2006, 24, 349–356.
  • Barth, A. The Infrared Absorption of Amino Acid Side Chains. Prog. Biophys. Mol. Biol. 2000, 74, 141–173.
  • Wilkerson, E. D.; Anthon, G. E.; Barrett, D. M.; Sayajon, G. F. G.; Santos, A. M.; Rodriguez-Saona, L. E. Rapid Assessment of Quality Parameters in Processing Tomatoes Using Hand-Held and Benchtop Infrared Spectrometers and Multivariate Analysis. J. Agric. Food Chem. 2013, 61, 2088–2095.
  • Bernazzani, P.; Chapados, C.; Delmas, G. Double-Helical Network in Amylose as Seen by Slow Calorimetry and FTIR. J. Polym. Sci. Part B: Polym. Phys. 2000, 38, 1662–1677.
  • Ricci, A.; Parpinello, G. P.; Olejar, K. J.; Kilmartin, P. A.; Versari, A. Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins. Appl. Spectrosc. 2015, 69, 1243–1250.
  • Pan, L.; Lu, R.; Zhu, Q.; Tu, K.; Cen, H. Predict Compositions and Mechanical Properties of Sugar Beet Using Hyperspectral Scattering. Food Bioprocess Technol. 2016, 9, 1177–1186.
  • Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure − Quality Relationships − A Review. Chem. Rev. 2010, 110, 6144–6168.
  • Lohumi, S.; Lee, S.; Lee, W.-H.; Kim, M. S.; Mo, C.; Bae, H.; Cho, B.-K. Detection of Starch Adulteration in Onion Powder by FT-NIR and FT-IR Spectroscopy. J. Agric. Food Chem. 2014, 62, 9246–9251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.