Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 12
499
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Aspergillus niger inactivation in microwave rotary drum drying of whole garlic bulbs and effect on quality of dried garlic powder

, & ORCID Icon
Pages 1528-1540 | Received 26 May 2018, Accepted 26 Aug 2018, Published online: 08 Oct 2018

References

  • Rahman, K. Garlic and Aging: new Insights into an Old Remedy. Ageing Res. Rev. 2003, 2, 39–56.
  • Cui, Z.-W.; Xu, S.-Y.; Sun, D.-W. Dehydration of Garlic Slices by Combined Microwave-Vacuum and Air Drying. Dry. Technol. 2003, 21, 1173–1184.
  • Santhosha, S.; Jamuna, P.; Prabhavathi, S. Bioactive Components of Garlic and Their Physiological Role in Health Maintenance: A Review. Food Biosci. 2013, 3, 59–74.
  • Sharma, G.; Prasad, S. Specific Energy Consumption in Microwave Drying of Garlic Cloves. Energy 2006, 31, 1921–1926.
  • Koike, S. T.; Gladders, P.; Paulus, A. Vegetable Diseases: A Colour Handbook; CRC Press: Boca Raton, Florida; 2006.
  • Hayden, N.; Maude, R. The Role of Seed‐Borne Aspergillus niger in Transmission of Black Mould of Onion. Plant Pathol. 2007, 41, 573–581.
  • Pitt, J. I.; Hocking, A. D. Fungi and Food Spoilage; Springer: New York, USA; 2009.
  • Rasooli, I.; Rezaei, M. B.; Allameh, A. Growth Inhibition and Morphological Alterations of Aspergillus niger by Essential Oils from Thymus Eriocalyx and Thymus x-Porlock. Food Control 2006, 17, 359–364.
  • Krishnan, S.; Manavathu, E. K.; Chandrasekar, P. H. Aspergillus flavus: an Emerging Non‐Fumigatus Aspergillus Species of Significance. Mycoses 2009, 52, 206–222.
  • Sherertz, R. J.; Belani, A.; Kramer, B. S.; Elfenbein, G. J.; Weiner, R. S.; Sullivan, M. L.; Thomas, R. G.; Samsa, G. P. Impact of Air Filtration on Nosocomial Aspergillus Infections: unique Risk of Bone Marrow Transplant Recipients. Am. J. Med. 1987, 83, 709–718.
  • Aware, R.; Thorat, B. Garlic under Various Drying Study and Its Impact on Allicin Retention. Dry. Technol. 2011, 29, 1510–1518.
  • Sharma, G.; Prasad, S. Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-Convective Drying. J. Food Eng. 2004, 65, 609–617.
  • Maskan, M. Kinetics of Colour Change of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 169–175.
  • Mafart, P.; Couvert, O.; Gaillard, S.; Leguérinel, I. On Calculating Sterility in Thermal Preservation Methods: application of the Weibull Frequency Distribution Model. Int. J. Food Microbiol. 2002, 72, 107–113.
  • Maskan, M. Microwave/Air and Microwave Finish Drying of Banana. Journal of Food Eng. 2000, 44, 71–78.
  • Zielinska, M.; Zielinska, D.; Markowski, M. The Effect of Microwave-Vacuum Pretreatment on the Drying Kinetics, Color and the Content of Bioactive Compounds in Osmo-Microwave-Vacuum Dried Cranberries (Vaccinium Macrocarpon). Food Bioprocess Technol. 2018, 11, 585–602.
  • Doymaz, İ. Drying Characteristics and Kinetics of Okra. J. Food Eng. 2005, 69, 275–279.
  • Chen, X. D. Moisture Diffusivity in Food and Biological Materials. Dry. Technol. 2007, 25, 1203–1213.
  • Babalis, S. J.; Belessiotis, V. G. Influence of the Drying Conditions on the Drying Constants and Moisture Diffusivity during the Thin-Layer Drying of Figs. J. Food Eng. 2004, 65, 449–458.
  • van Boekel, M. A. On the Use of the Weibull Model to Describe Thermal Inactivation of Microbial Vegetative Cells. Int. J. Food Microbiol. 2002, 74, 139–159.
  • Awuah, G.; Ramaswamy, H.; Economides, A. Thermal Processing and Quality: principles and Overview. Chem. Eng. Process. Process Intensif. 2007, 46, 584–602.
  • Buzrul, S. A Suitable Model of Microbial Survival Curves for Beer Pasteurization. LWT-Food Sci. Technol. 2007, 40, 1330–1336.
  • Peleg, M.; Penchina, C.; Cole, M. Estimation of the Survival Curve of Listeria monocytogenes during Non-Isothermal Heat Treatments. Food Res. Int. 2001, 34, 383–388.
  • Peleg, M.; Penchina, C. M. Modeling Microbial Survival during Exposure to a Lethal Agent with Varying Intensity. Crit. Rev. Food Sci. Nutr . 2000, 40, 159–172.
  • Fernández, A.; Salmerón, C.; Fernández, P. S.; Martı́nez, A. Application of a Frequency Distribution Model to Describe the Thermal Inactivation of Two Strains of Bacillus cereus. Trends Food Sci. Technol. 1999, 10, 158–162.
  • Peleg, M.; Cole, M. B. Reinterpretation of Microbial Survival Curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380.
  • Belbahi, A.; Bohuon, P.; Leguérinel, I.; Meot, J. M.; Loiseau, G.; Madani, K. Heat Resistances of Candida apicola and Aspergillus niger Spores Isolated from Date Fruit Surface. J. Food Process Eng. 2017, 40, e12272.
  • Pathare, P. B.; Opara, U. L.; Al-Said, F. A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60.
  • Morin, M.; Hayward, L.; McSweeney, M. B. Use of Experienced Panelists and the Projective Mapping Task in Comparison to Trained Panelists and Naïve Consumers. J. Sensory Stud. 2018, e12463. DOI: 10.1111/joss.12463
  • Obenland, D.; Campisi-Pinto, S.; Arpaia, M. L. Determinants of Sensory Acceptability in Grapefruit. Scientia Horticulturae 2018, 231, 151–157.
  • Gaware, T.; Sutar, N.; Thorat, B. Drying of Tomato Using Different Methods: comparison of Dehydration and Rehydration Kinetics. Dry. Technol. 2010, 28, 651–658.
  • Sutar, P.; Prasad, S. Modeling Microwave Vacuum Drying Kinetics and Moisture Diffusivity of Carrot Slices. Dry. Technol. 2007, 25, 1695–1702.
  • Simpson, R.; Ramírez, C.; Nuñez, H.; Jaques, A.; Almonacid, S. Understanding the Success of Page's Model and Related Empirical Equations in Fitting Experimental Data of Diffusion Phenomena in Food Matrices. Trends Food Sci. Technol. 2017, 62, 194–201.
  • Dadalı, G.; Apar, D. K.; Özbek, B. Estimation of Effective Moisture Diffusivity of Okra for Microwave Drying. Dry. Technol. 2007, 25, 1445–1450.
  • Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: basics and Heat and Mass Transfer Modeling. Food Eng. Rev. 2012, 4, 89–106.
  • Li, X.; Pan, Z. Dry-Peeling of Tomato by Infrared Radiative Heating: part I. Model Development. Food Bioprocess Technol. 2014, 7, 1996–2004.
  • Li, X.; Pan, Z. Dry Peeling of Tomato by Infrared Radiative Heating: Part II. Model Validation and Sensitivity Analysis. Food Bioprocess Technol. 2014, 7, 2005–2013.
  • Li, X.; Pan, Z.; Atungulu, G. G.; Wood, D.; McHugh, T. Peeling Mechanism of Tomato under Infrared Heating: Peel Loosening and Cracking. J. Food Eng. 2014, 128, 79–87.
  • Ho, Q. T.; Carmeliet, J.; Datta, A. K.; Defraeye, T.; Delele, M. A.; Herremans, E.; Opara, L.; Ramon, H.; Tijskens, E.; van der Sman, R.; et al. Multiscale Modeling in Food Engineering. J. Food Eng. 2013, 114, 279–291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.