Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 13
227
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

An antisolvent crystallization involved process for drying silica hydrogel

, , &
Pages 1605-1614 | Received 31 Oct 2017, Accepted 04 Sep 2018, Published online: 03 Jan 2019

References

  • Koebel, M. M.; Lukas, H.; Zhao, S.; Malfait, W. J. Breakthroughs in Cost-Effective, Scalable Production of Super-Insulating, Ambient-Dried Silica Aerogel and Silica-Biopolymer Hybrid Aerogels: From Laboratory to Pilot Scale. J. Sol-Gel Sci. Technol. 2016, 79, 308–318. DOI:10.1007/s10971-016-4012-5
  • Pan, Y.; He, S.; Cheng, X.; Li, Z.; Li, C.; Huang, Y.; Gong, L. A Fast Synthesis of Silica Aerogel Powders-Based on Water Glass via Ambient Drying. J. Sol-Gel Sci. Technol. 2017, 82, 594–601. DOI:10.1007/s10971-017-4312-4
  • Maleki, H. Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chemical Engineering Journal 2016, 300, 98–118. DOI:10.1016/j.cej.2016.04.098
  • Bargozin, H.; Moghaddas, J. S. Stability of Nanoporous Silica Aerogel Dispersion as Wettability Alteration Agent. Journal of Dispersion Science and Technology 2013, 34, 1454–1464. DOI:10.1080/01932691.2012.738128
  • Smith, D. M.; Scherer, G. W.; Anderson, J. M. Shrinkage during Drying of Silica Gel. J. Non-Cryst. Solids 1995, 188, 191–206. DOI:10.1016/0022-3093(95)00187-5
  • Sarawade, P. B.; Kim, J. K.; Park, J. K.; Kim, H. K. Influence of Solvent Exchange on the Physical Properties of Sodium Silicate Based Aerogel Prepared at Ambient Pressure. Aerosol Air Qual. Res. 2006, 6, 93–105. DOI:10.4209/aaqr.2006.03.0008
  • Masmoudi, Y.; Rigacci, A.; Ilbizian, P.; Cauneau, F.; Achard, P. Diffusion during the Supercritical Drying of Silica Gels. Drying Technol. 2006, 24, 1121–1125. DOI:10.1080/07373930600778270
  • Wang, B.; Zhang, W.; Zhang, W.; Mujumdar, A. S.; Huang, L. Progress in Drying Technology for Nanomaterials. Drying Technol. 2005, 23, 7–32. DOI:10.1081/DRT-200047900
  • Ibrahim, A. R.; Zhu, L.; Xu, J.; Hong, Y.; Su, Y.; Wang, H.; Chen, H.; Li, J. Synthesis of Mesoporous Alumina with CO2 Expanded Carbonation and Its Catalytic Oxidation of Cyclohexanone. J. Supercrit. Fluids 2014, 92, 190–196. DOI:10.1016/j.supflu.2014.05.021
  • Egbuchunam, T.; Balkose, D. Effect of Supercritical Ethanol Drying on the Properties of Zinc Oxide Nanoparticles. Drying Technol. 2012, 30, 739–749. DOI:10.1080/07373937.2012.661380
  • Defraeye, T.; Radu, A.; Derome, D. Recent Advances in Drying at Interfaces of Biomaterials. Drying Technol. 2016, 34, 1904–1925. DOI:10.1080/07373937.2016.1144062
  • Abubakr, N.; Lin, S. X.; Chen.; Xiao, D. Effects of Drying Methods on the Release Kinetics of Vitamin B12 in Calcium Alginate Beads. Drying Technol. 2009, 27, 1258–1265. DOI:10.1080/07373930903267732
  • Zhu, B.; Wei, W.; Ma, G.; Zhuang, Y.; Liu, J.; Song, L.; Hu, X.; Wang, H.; Li, J. A Pressurized Carbonation Sol-Gel Process for Preparing Large Pore Volume Silica and Its Performance as a Flatting Agent and an Adsorbent. The Journal of Supercritical Fluids 2015, 97, 1–5. DOI:10.1016/j.supflu.2014.11.006
  • Bhagat, S. D.; Kim, Y.-H.; Moon, M.-J.; Ahn, Y.-S.; Yeo, J.-G. A Cost-Effective and Fast Synthesis of Nanoporous SiO2 Aerogel Powders Using Water-Glass via Ambient Pressure Drying Route. Solid State Sci. 2007, 9, 628–635. DOI:10.1016/j.solidstatesciences.2007.04.020
  • Maleki, H.; Durães, L.; Portugal, A. Development of Mechanically Strong Ambient Pressure Dried Silica Aerogels with Optimized Properties. J. Phys. Chem. C 2015, 119, 7689–7703. DOI:10.1021/jp5116004
  • Bisson, A.; Rigacci, A.; Lecomte, D.; Rodier, E.; Achard, P. Drying of Silica Gels to Obtain Aerogels: Phenomenology and Basic Techniques. Drying Technol. 2003, 21, 593–628. DOI:10.1081/DRT-120019055
  • Scherer, G. W. Stress from Crystallization of Salt. Cement Concrete Res. 2004, 34, 1613–1624. DOI:10.1016/j.cemconres.2003.12.034
  • Liu, X.; Khinast, J. G.; Glasser, B. J. A Parametric Investigation of Impregnation and Drying of Supported Catalysts. Chem. Eng. Sci. 2008, 63, 4517–4530. DOI:10.1016/j.ces.2008.06.013
  • Shokri, N.; Lehmann, P.; Or, D. Liquid-Phase Continuity and Solute Concentration Dynamics during Evaporation from Porous Media: Pore-Scale Processes near Vaporization Surface. Phys. Rev. E 2010, 81, 1–7. DOI:10.1103/PhysRevE.81.046308
  • Börnhorst, M.; Walzel, P.; Rahimi, A.; Kharaghani, A.; Tsotsas, E.; Nestle, N.; Besser, A.; Kleine Jäger, F.; Metzger, T. Influence of Pore Structure and Impregnation–Drying Conditions on the Solid Distribution in Porous Support Materials. Drying Technol. 2016, 34, 1964–1978. DOI:10.1080/07373937.2016.1147048
  • Rahimi, A.; Metzger, T.; Kharaghani, A.; Tsotsas, E. Interaction of Droplets with Porous Structures: Pore Network Simulation of Wetting and Drying. Drying Technol. 2016, 34, 1129–1140. DOI:10.1080/07373937.2015.1099106
  • Wang, Y.; Kharaghani, A.; Metzger, T.; Tsotsas, E. Pore Network Drying Model for Particle Aggregates: assessment by X-Ray Microtomography. Drying Technol. 2012, 30, 1800–1809. DOI:10.1080/07373937.2012.713422
  • Fechler, N.; Fellinger, T.-P.; Antonietti, M. Salt Templating: A Simple and Sustainable Pathway toward Highly Porous Functional Carbons from Ionic Liquids. Adv. Mater. 2013, 25, 75–79. DOI:10.1002/adma.201203422
  • Nisticò, R.; Magnacca, G.; Antonietti, M.; Fechler, N. Salted Silica: Sol-Gel Chemistry of Silica under Hypersaline Conditions. Z Anorg. Allg. Chem. 2014, 640, 582–587. DOI:10.1002/zaac.201300526
  • Kim, S. H.; Liu, B. Y. H.; Zachariah, M. R. Ultrahigh Surface Area Nanoporous Silica Particles via an Aero-Sol-Gel Process. Langmuir 2004, 20, 2523–2526. DOI:10.1021/la034864k
  • Liu, Y.; Ba, H.; Nguyen, D.-L.; Ersen, O.; Romero, T.; Zafeiratos, S.; Begin, D.; Janowska, I.; Pham-Huu, C. Synthesis of Porous Carbon Nanotubes Foam Composites with a High Accessible Surface Area and Tunable Porosity. J. Mater. Chem. A 2013, 1, 9508–9516. DOI:10.1039/C3TA10695K
  • Li, H.; Li, S.; Zhang, Y.; Yan, F. Inorganic Salt Templated Porous TiO2 Photoelectrode for Solid-State Dye-Sensitized Solar Cells. RSC Adv. 2016, 6, 346–352. DOI:10.1039/C5RA22324E
  • Muehling, J. K.; Arnold, H. R.; House, J. E. Effects of Particle Size on the Decomposition of Ammonium Carbonate. Thermochim. Acta 1995, 255, 347–353. DOI:10.1016/0040-6031(94)02155-H
  • Peterson, A. K.; Morgan, D. G.; Skrabalak, S. E. Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template. Langmuir 2010, 26, 8804–8809. DOI:10.1021/la904549t
  • Dourbash, A.; Motahari, S.; Omranpour, H. Effect of Water Content on Properties of One-Step Catalyzed Silica Aerogels via Ambient Pressure Drying. J. Non-Cryst. Solids 2014, 405, 135–140. DOI:10.1016/j.jnoncrysol.2014.09.013
  • Pierre, A. C.; Elaloui, E.; Pajonk, G. M. Comparison of the Structure and Porous Texture of Alumina Gels Synthesized by Different Methods. Langmuir 1998, 14, 66–73. DOI:10.1021/la970044u
  • Alnaief, M.; Smirnova, I. In Situ Production of Spherical Aerogel Microparticles. J. Supercrit. Fluids 2011, 55, 1118–1123. DOI:10.1016/j.supflu.2010.10.006
  • Milton, E. W.; Ellicot, C.; Ellsworth, G. A. Method of selectively producing high pore volume silica gel, US 3959174, 1976.
  • White, J. F.; Wilson, I. V. Silica Aerogel as a Flatting Agent for Protective Coatings. Ind. Eng. Chem. 1941, 33, 1169–1173. DOI:10.1021/ie50381a018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.