626
Views
25
CrossRef citations to date
0
Altmetric
Articles

Tuning, measurement and prediction of the impact of freezing on product morphology: A step toward improved design of freeze-drying cycles

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 579-599 | Received 31 Jan 2018, Accepted 21 Sep 2018, Published online: 02 Jan 2019

References

  • Franks, F.; Auffret, T. Freeze-Drying of Pharmaceuticals and Biopharmaceuticals; RCS Publishing: Cambridge, UK, 2007.
  • Rey, L.; May, J. C. Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products; Taylor & Francis: New York, USA, 2010.
  • Pikal, M. J.; Rambhatla, S.; Ramot, R. The Impact of the Freezing Stage in Lyophilization: Effects of the Ice Nucleation Temperature on Process Design and Product Quality. Am. Pharm. Rev. 2002, 5, 48–53.
  • Hottot, A.; Vessot, S.; Andrieu, J. Freeze-Drying of Pharmaceuticals in Vials: Influence of Freezing Protocol and Sample Configuration on Ice Morphology and Freeze-Dried Cake Texture. Chem. Eng. Process. 2007, 46, 666–674.
  • Searles, J.; Carpenter, J.; Randolph, T. The Ice Nucleation Temperature Determines the Primary Drying Rate of Lyophilization for Samples Frozen on a Temperature-Controlled Shelf. J. Pharm. Sci. 2001, 90, 860–871.
  • Kasper, J. C.; Friess, W. F. The Freezing Step in Lyophilization: Physico-Chemical Fundamentals, Freezing Methods and Consequences on Process Performance and Quality Attributes of Biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011, 78, 248–263.
  • Capozzi, L. C.; Pisano, R. Looking inside the ‘Black Box’: Freezing Engineering to Ensure the Quality of Freeze-Dried Biopharmaceuticals. Eur. J. Pharm. Biopharm. 2018, 129, 58–65.
  • Liao, X.; Krishnamurthy, R.; Suryanarayanan, R. Influence of Processing Conditions on the Physical State of Mannitol. Implications in Freeze-Drying. Pharm. Res. 2007, 24, 370–376.
  • Oddone, I.; Van Bockstal, P.-J.; De Beer, T.; Pisano, R. Impact of Vacuum-Induced Surface Freezing on Inter- and Intra-Vial Heterogeneity. Eur. J. Pharm. Biopharm. 2016, 103, 167–178.
  • Gorth, P. Chemical Crystallography, Part Three, Aliphatic and Aromatic Hydrocarbon Compounds; Wilhelm Engelmann: Leipzig, 1910.
  • Williams, N. A.; Dean, T. Vial Breakage by Frozen Mannitol Solutions: Correlation with Thermal Characteristics and Effect of Stereoisomerism, Additives, and Vial Configuration. J. Parent. Sci. Technol. 1991, 45, 94–100.
  • Williams, N. A.; Lee, Y.; Polli, G. P.; Jennings, T. A. The Effects of Cooling Rate on Solid Phase Transitions and Associated Vial Breakage Occurring in Frozen Mannitol Solutions. J. Parent. Sci. Technol. 1986, 40, 135–141.
  • Oddone, I.; Barresi, A. A.; Pisano, R. Influence of Controlled Ice Nucleation on the Freeze-Drying of Pharmaceutical Products: The Secondary Drying Step. Int. J. Pharm. 2017, 524, 134–140.
  • Fissore, D.; Pisano, R. Computer-Aided Framework for the Design of Freeze-Drying Cycles: Optimization of the Operating Conditions of the Primary Drying Stage. Processes 2015, 3, 406–421.
  • Bhatnagar, B. S.; Pikal, M. J.; Robin, H. B. Study of the Individual Contributions of Ice Formation and Freeze-Concentration on Isothermal Stability of Lactate Dehydrogenase during Freezing. J. Pharm. Sci. 2008, 97, 798–814.
  • Geidobler, R.; Winter, G. Controlled Ice Nucleation in the Field of Freeze-Drying: Fundamentals and Technology Review. Eur. J. Pharm. Biopharm. 2013, 85, 214–222.
  • Pisano, R. Alternative Alternative Methods of Controlling Nucleation in Freeze-Drying. In Lyophilization of Pharmaceuticals and Biologicals; New Technologies and Approaches; Ward, K. R., Matejtschuk, P., Eds.; Springer: New York, Chap. 4 (in press). DOI:10.1007/978-1-4939-8928-7_4
  • Kramer, M.; Sennhenn, B.; Lee, G. Freeze-Drying Using Vacuum-Induced Surface Freezing. J. Pharm. Sci. 2002, 91, 433–443.
  • Liu, J.; Viverette, T.; Virgin, M.; Anderson, M.; Dalal, P. A Study of the Impact of Freezing on the Lyophilization of a Concentrated Formulation with a High Fill Depth. Pharm. Dev. Technol. 2005, 10, 261–272.
  • Oddone, I.; Pisano, R.; Bullich, R.; Stewart, P. Vacuum-Induced Nucleation as a Method for Freeze-Drying Cycle Optimization. Ind. Eng. Chem. Res. 2014, 53, 18236–18244.
  • Hunt, J. D.; Jackson, K. A. Nucleation of Solid in an Undercooled Liquid by Cavitation. J. Appl. Phys. 1966, 37, 254–257.
  • Zhang, X.; Inada, T.; Yabe, A.; Lu, S.; Kozawa, Y. Active Control of Phase Change from Supercooled Water to Ice by Ultrasonic Vibration, Part 2: Generation of Ice Slurries and Effect of Bubble Nuclei. Int. J. Heat Mass Transf. 2001, 44, 4533–4539.
  • Zhang, X.; Inada, T.; Tezuka, A. Ultrasonic-Induced Nucleation of Ice in Water Containing Air Bubbles. Ultrason. Sonochem. 2003, 10, 71–76.
  • Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R. J.; Tyagi, R. D.; Surampalli, R. Y. Ultrasonic Pretreatment of Sludge: A Review. Ultrason. Sonochem. 2011, 18, 1–18.
  • Rastogi, N. K. Opportunities and Challenges in Application of Ultrasound in Food Processing. Crit. Rev. Food Sci. Nutr. 2011, 51, 705–722.
  • Hickling, R. Nucleation of Freezing by Cavity Collapse and Its Relation to Cavitation Damage. Nature 1965, 206, 915–917.
  • Saclier, M.; Peczalski, R.; Andrieu, J. A Theoretical Model for Ice Primary Nucleation Induced by Acoustic Cavitation. Ultrason. Sonochem. 2010, 17, 98–105.
  • Ohsaka, K.; Trinh, E. H. Dynamic Nucleation of Ice Induced by a Single Stable Cavitation Bubble. Appl. Phys. Lett. 1998, 73, 129–131.
  • Hozumi, T.; Saito, A.; Okawa, S.; Matsui, T. Freezing Phenomena of Supercooled Water under Impacts of Ultrasonic Waves. Int. J. Refrig. 2002, 25, 948–953.
  • Inada, T.; Zhang, X.; Yabe, A.; Kozawa, Y. Active Control of Phase Change from Supercooled Water to Ice by Ultrasonic Vibration, Part 1: Control of Freezing Temperature. Int. J. Heat Mass Transf. 2001, 44, 4523–4531.
  • Chow, R.; Blindt, R.; Chivers, R.; Povey, M. The Sonocrystallisation of Ice in Sucrose Solutions: Primary and Secondary Nucleation. Ultrasonics 2003, 41, 595–604.
  • Nakagawa, K.; Hottot, A.; Vessot, S.; Andrieu, J. Influence of Controlled Nucleation by Ultrasounds on Ice Morphology of Frozen Formulations for Pharmaceutical Proteins Freeze-Drying. Chem. Eng. Process. 2006, 45, 783–791.
  • Hottot, A.; Nakagawa, K.; Andrieu, J. Effect of Ultrasound-Controlled Nucleation on Structural and Morphological Properties of Freeze-Dried Mannitol Solutions. Chem. Eng. Res. Des. 2008, 86, 193–200.
  • Passot, S.; Tréléa, I. C.; Marin, M.; Galan, M.; Morris, G. J.; Fonseca, F. Effect of Controlled Ice Nucleation on Primary Drying Stage and Protein Recovery in Vials Cooled in a Modified Freeze-Dryer. J. Biomech. Eng. 2009, 131, 074511.
  • Nakagawa, K.; Hottot, A.; Vessot, A.; Andrieu, J. Modeling of Freezing Step during Freeze-Drying of Drugs in Vials. AIChE J. 2007, 53, 1362–1372.
  • Morris, J.; Morris, G. J.; Taylor, R.; Zhai, S.; Slater, N. K. H. The Effect of Controlled Nucleation of Ice on the Ice Structure, Drying Rate, and Protein Recovery in Vials Cooled in Modified Shelf Freeze Drier. In Abstracts of Papers and Posters Presented at the Forty-First Annual Meeting of the Society for Cryobiology in Association with the Japanese Societies & Associations for Cryobiology, Cryopreservation and Cryomedicine, and the Chinese Cryobiology Society (#48). Cryobiology. 2004, 49, 308–309.
  • Fissore, D.; Barresi, A. A. In-line Product Quality Control of Pharmaceuticals in Freeze-Drying Processes. In Modern Drying Technology Vol.3: Product Quality and Formulation; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, 2011; Chap. 4, pp. 91–154.
  • Arends, B. J.; Blindt, R. A.; Janssen, J.; Patrick, M. Crystallisation Process Using Ultrasound. Patent US 6630185 B2, October 7, 2003. Patent EP 1409100 B1, December 30, 2009.
  • Rau, W. Eiskeimbildung Durch Dielektrische Polarisation. Z. Naturforsch. A 1951, 6, 649–657.
  • Petersen, A.; Schneider, H.; Rau, G.; Glasmacher, B. A New Approach for Freezing of Aqueous Solutions under Active Control of the Nucleation Temperature. Criobiology 2006, 53, 248–257.
  • Margaritis, A.; Bassi, A. S. Principles and Biotechnological Applications of Bacterial Ice Nucleation. Crit. Rev. Biotechnol. 1991, 11, 277–295.
  • Cochet, N.; Widehem, P. Ice Crystallization by Pseudomonas syringae. Appl. Microbiol. Biotechnol. 2000, 54, 153–161.
  • Lindong, W.; Shannon, N.; Anisa, S.; Shannon, L.; Mehmet, T. Controlled Ice Nucleation Using Freeze-Dried Pseudomonas syringae Encapsulated in Alginate Beads. Cryobiology 2017, 75, 1–6.
  • Bursac, R.; Sever, R.; Hunek, B. A Practical Method for Resolving the Nucleation Problem in Lyophilization. BioProcess Int. 2009, 7, 6672.
  • Konstantinidis, A. K.; Kuu, W.; Otten, L.; Nail, S. L.; Sever, R. R.; Bons, V.; Debo, D.; Pikal, M. J. Controlled Nucleation in Freeze-Drying: Effects on Pore Size in the Dried Product Layer, Mass Transfer Resistance, and Primary Drying Rate. J. Pharm. Sci. 2011, 100, 3453–3470.
  • Rowe, T. W. A Technique for the Nucleation of Ice. In Proceedings of International Symposium on Biological Product Freeze-Drying and Formulation, Bethesda, USA, October 24–26, 1990. Development in Biological Standardization 1992, Vol. 74, p. 377.
  • Rambhatla, S.; Ramot, R.; Bhugra, C.; Pikal, M. J. Heat and Mass Transfer Scale-up Issues during Freeze Drying: II. Control and Characterization of the Degree of Supercooling. AAPS PharmSciTech. 2004, 5, 54–62.
  • Patel, S. M.; Bhugra, C.; Pikal, M. J. Reduced Pressure Ice Fog Technique for Controlled Ice Nucleation during Freeze-Drying. AAPS PharmSciTech. 2009, 10, 1406–1411.
  • Geidobler, R.; Mannschedel, S.; Winter, G. A New Approach to Achieve Controlled Ice Nucleation of Supercooled Solutions during the Freezing Step in Freeze-Drying. J. Pharm. Sci. 2012, 101, 4409–4413.
  • Thompson, T. N. LyopatTM: Real-Time Monitoring and Control of the Freezing and Primary Drying Stages during Freeze-Drying for Improved Product Quality and Reduced Cycle Times. Am. Pharm. Rev. 2013, 16, 625. http://www.americanpharmaceuticalreview.com.
  • Chakravarty, P.; Lee, R.; Demarco, F.; Renzi, E. Ice Fog as a Means to Induce Uniform Ice Nucleation During Lyophilization. Biopharm Int. 2012, 25, 33–38.
  • Kharaghani, A.; Tsotsas, E.; Wolf, C.; Beutler, T.; Guttzeit, M.; Oetjen, G.-W. Freeze‐Drying. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2017. DOI:10.1002/14356007.h12_h01.pub2
  • Pisano, R.; Fissore, D.; Barresi, A. A. Freeze-Drying Cycle Optimization Using Model Predictive Control Techniques. Ind. Eng. Chem. Res. 2011, 50, 7363–7379.
  • Hottot, A.; Vessot, S.; Andrieu, J. Determination of Mass and Heat Transfer Parameters during Freeze-Drying Cycles of Pharmaceutical Products. PDA J. Pharm. Sci. Technol. 2005, 59, 138–153.
  • Kuu, W. Y.; Hardwick, L. M.; Akers, M. J. Rapid Determination of Dry Layer Resistance to Various Pharmaceutical Formulations during Primary Drying Using Product Temperature Profiles. Int. J. Pharm. 2006, 313, 99–113.
  • Kuu, W. Y.; O’Bryan, K. R.; Hardwick, L. M.; Paul, T. W. Product Mass Transfer Resistance Directly Determined during Freeze-Drying Cycle Runs Using Tunable Diode Laser Absorption Spectroscopy (TDLAS) and Pore Diffusion Model. Pharm. Dev. Technol. 2011, 16, 343–357.
  • Kodama, T.; Sawada, H.; Hosomi, H.; Takeuchi, M.; Wakiyama, N.; Yonemochi, E.; Terada, K. Determination for Dry Layer Resistance of Sucrose under Various Primary Drying Conditions Using a Novel Simulation Program for Designing Pharmaceutical Lyophilization Cycle. Int. J. Pharm. 2013, 452, 180–187.
  • Bosca, S.; Barresi, A. A.; Fissore, D. Use of a Soft-Sensor for the Fast Estimation of Dried Cake Resistance During a Freeze-Drying Cycle. Int. J. Pharm. 2013, 451, 23–33.
  • Goff, J. A.; Gratch, S. Low-Pressure Properties of Water from -160 to 212 F. Transactions of the American Society of Heating and Ventilating Engineers 1946, pp. 95–122. Presented at the 52nd Annual Meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Model-Based Framework for the Analysis of Failure Consequences in a Freeze-Drying Process. Ind. Eng. Chem. Res. 2012, 51, 12386–12397.
  • Neumann, K. H. Freeze-Drying Apparatus. Patent US 2994132, August 1, 1961.
  • Milton, N.; Pikal, M. J.; Roy, M. L.; Nail, S. L. Evaluation of Manometric Temperature Measurement as a Method of Monitoring Product Temperature During Lyophilization. PDA J. Pharm. Sci. Technol. 1997, 51, 7–16.
  • Pikal, M. J.; Tang, X.; Nail, S. L. Automated Process Control Using Manometric Temperature Measurement. Patent US 6971187 B1, December 6, 2005.
  • Tang, X. C.; Nail, S. L.; Pikal, M. J. Freeze-Drying Process Design by Manometric Temperature Measurement: Design of a Smart Freeze-Dryer. Pharm. Res. 2005, 22, 685–700.
  • Chouvenc, P.; Vessot, S.; Andrieu, J.; Vacus, P. Optimization of the Freeze-Drying Cycle: A New Model for Pressure Rise Analysis. Dry. Technol. 2004, 22, 1577–1601.
  • Velardi, S. A.; Rasetto, V.; Barresi, A. A. Dynamic Parameters Estimation Method: Advanced Manometric Temperature Measurement Approach for Freeze-Drying Monitoring of Pharmaceutical. Ind. Eng. Chem. Res. 2008, 47, 8445–8457.
  • Velardi, S. A.; Barresi, A. A. Method and System for Controlling a Freeze Drying Process. Patent EP 2156124 B1, April 25, 2012. Patent US8800162 B2, August 12, 2014.
  • Fissore, D.; Pisano, R.; Barresi, A. A. On the Methods Based on the Pressure Rise Test for Monitoring a Freeze-Drying Process. Dry. Technol. 2010, 29, 73–90.
  • Barresi, A. A.; Pisano, R.; Rasetto, V.; Fissore, D.; Marchisio, D. L. Model-Based Monitoting and Control of Industrial Freeze-Drying Processes: Effect of Batch Non-Uniformity. Dry. Technol. 2010, 28, 577–590.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Monitoring of the Secondary Drying in Freeze-Drying of Pharmaceuticals. J. Pharm. Sci. 2011, 100, 732–742.
  • Grassini, S.; Pisano, R.; Barresi, A. A.; Angelini, E.; Parvis, M. Frequency Domain Image Analysis for the Characterization of Porous Products. Measurement 2016, 94, 515–522.
  • Parvis, M.; Grassini, S.; Angelini, E.; Pisano, R.; Barresi, A. A. Characterization of Freeze-Dried Pharmaceutical Product Structures by an FFT-Imaging Approach. In Proceedings of IEEE International Symposium on Medical Measurements and Applications “MeMeA 2014,” Lisbon, Portugal, June 11–12, 2014, pp. 302–307.
  • Grassini, S.; Angelini, E.; Pisano, R.; Barresi, A.; Parvis, M. Wavelet Image Decomposition for Characterization of Freeze-Dried Pharmaceutical Product Structures. In Proceedings of IEEE International Instrumentation and Measurements Technology Conference “I2MTC 2015”, Pisa, Italy, May 11–14, 2015, pp. 2072–2077.
  • Arsiccio, A.; Sparavigna, A. C.; Pisano, R.; Barresi, A. A. Measuring and predicting pore size distribution of freeze-dried solutions. Dry. Technol. in press. DOI:10.1080/07373937.2018.1430042.
  • Pisano, R.; Barresi, A. A.; Capozzi, L. C.; Novajra, G.; Oddone, I.; Vitale-Brovarone, C. Characterization of the Mass Transfer of Lyophilized Products Based on X-Ray Micro-Computed Tomography Images. Dry. Technol. 2017, 35, 933–938.
  • Liapis, A. I.; Bruttini, R. A Theory for the Primary and Secondary Drying Stages of the Freeze-Drying of Pharmaceutical Crystalline and Amorphous Solutes: Comparison Between Experimental Data and Theory. Sep. Technol. 1994, 4, 144–155.
  • Comiti, J.; Renaud, M. A New Model for Determining Mean Structure Parameters of Fixed Beds from Pressure Drop Measurements: Application to Beds Packed with Parallelepipedal Particles. Chem. Eng. Sci. 1989, 44, 1539–1545.
  • Warning, A.; Verboven, P.; Nicolaï, B.; van Dalen, G.; Datta, A. K. Computation of Mass Transport Properties of Apple and Rice from X-Ray Microtomography Images. Innov. Food Sci. Emerg. Technol. 2014, 24, 14–27.
  • Li, S.; Stawczyk, J.; Zbicinski, I. CFD Model of Apple Atmospheric Freeze Drying at Low Temperature. Dry. Technol. 2007, 25, 1331–1339.
  • Nakagawa, K.; Ochiai, T. A Mathematical Model of Multi-Dimensional Freeze-Drying for Food Products. J. Food Eng. 2015, 161, 55–67.
  • Goshima, H.; Do, G.; Nakagawa, K. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying. J. Pharm. Sci. 2016, 105, 1920–1933.
  • Capozzi, L. C.; Arsiccio, A.; Sparavigna, A. C.; Pisano, R.; Barresi, A. A. Image Segmentation and 3D Reconstruction for Improved Prediction of the Sublimation Rate During Freeze Drying. In Proceedings of 21st International Drying Symposium IDS’2018, Valencia, Spain, September 11–14, 2018; paper 7646.
  • Raman, P. Freeze Drying Microscopy as a Tool to Study Sublimation Kinetics, PhD. Thesis, Loughborough University, UK, 2015. https://dspace.lboro.ac.uk/2134/18316.
  • Ray, P.; Rielly, C. D.; Stapley, A. G. F. A Freeze-Drying Microscopy Study of the Kinetics of Sublimation in a Model Lactose System. Chem. Eng. Sci. 2017, 172, 731–743.
  • Kochs, M.; Schwindke, P.; Körber, C. A Microscope Stage for the Dynamic Observation of Freezing and Freeze-Drying in Solutions and Cell-Suspensions. Cryo-Lett. 1989, 10, 401–420.
  • Pikal, M. J.; Shah, S.; Senior, D.; Lang, J. E. Physical-Chemistry of Freeze-Drying – Measurement of Sublimation Rates for Frozen Aqueous Solutions by a Microbalance Technique. J. Pharm. Sci. 1983, 72, 635–650.
  • Kochs, M.; Korber, C.; Nunner, B.; Heschel, I. The Influence of the Freezing Process on Vapor Transport during Sublimation in Vacuum-Freeze-Drying. Int. J. Heat Mass Transf. 1991, 34, 2395–2408.
  • Zhai, S.; Taylor, R.; Sanches, R.; Slater, N. K. H. Measurement of Lyophilisation Primary Drying Rates by Freeze-Drying Microscopy. Chem. Eng. Sci. 2003, 58, 2313–2323.
  • Meister, E.; Gieseler, H. Freeze-Dry Microscopy of Protein/Sugar Mixtures: Drying Behaviour, Interpretation of Collapse Temperature and a Comparison to Corresponding Glass Transition Data. J. Pharm. Sci. 2009, 98, 3072–3072.
  • Pisano, R.; Capozzi, L. Prediction of Product Morphology of Lyophilized Drugs in the Case of Vacuum Induced Surface Freezing. Chem. Eng. Res. Des. 2017, 125, 119–129.
  • Bomben, J. L.; King, C. J. Heat and Mass Transport in the Freezing of Apple Tissue. Int. J. Food Sci. Technol. 2007, 17, 615–632.
  • Kurz, W.; Fisher, D. J. Fundamentals of Solidification; Trans Tech Publications: Switzerland, 1992.
  • Arsiccio, A.; Barresi, A. A.; Pisano, R. Prediction of Ice Crystal Size Distribution after Freezing of Pharmaceutical Solutions. Cryst. Growth Des. 2017, 17, 4573–4581.
  • Arsiccio, A.; Pisano, R. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space. J. Pharm. Sci. 2018, 107, 1586–1596.
  • Xiong, Q.; Baychev, T. G.; Jivkov, A. P. Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport. J. Contam. Hydrol. 2016, 192, 101–117.
  • Blunt, M. J. Flow in Porous Media – Pore-Network Models and Multiphase Flow. Curr. Opin. Colloid Interface Sci. 2001, 6, 197–207.
  • Vorhauer, N.; Tran, Q. T.; Metzger, T.; Tsotsas, E.; Prat, M. Experimental Investigation of Drying in a Model Porous Medium: Influence of Thermal Gradients. Dry. Technol. 2013, 31, 920–929.
  • Prat, M. Recent Advances in Pore-Scale Models for Drying of Porous Media. Chem. Eng. J. 2002, 86, 153–164.
  • Metzger, T.; Irawan, A.; Tsotsas, E. Isothermal Drying of Pore Networks: Influence of Friction for Different Pore Structures. Dry. Technol. 2007, 25, 49–57.
  • Kharaghani, A.; Metzger, T.; Tsotsas, E. A Proposal for Discrete Modelling of Mechanical Effects During Drying, Combining Pore Network with DEM. AIChE J. 2011, 57, 872–885.
  • Yu, L. X. Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control. Pharm. Res. 2008, 25, 781–791.
  • Yu, L. X.; Amidon, G.; Khan, M. A.; Hoag, S. W.; Polli, J.; Raju, G. K.; Woodcock, J. Understanding Pharmaceutical Quality by Design. AAPS J. 2014, 16, 771–783.
  • To, E. C.; Flink, J. M. Collapse, a Structural Transition in Freeze Dried Carbohydrates. III Prerequisite of Recrystallization. Int. J. Food Sci. Technol. 2007, 13, 583–594.
  • Pikal, M. J.; Shah, S. The Collapse Temperature in Freeze Drying: Dependence on Measurement Methodology and Rate of Water Removal from the Glassy Phase. Int. J. Pharm. 1990, 62, 165–186.
  • Slade, L.; Levine, H.; Reid, D. S. Beyond Water Activity: Recent Advances Based on an Alternative Approach to the Assessment of Food Quality and Safety. Crit. Rev. Food Sci. Nutr. 1991, 30, 115–360.
  • Levi, G.; Karel, M. Volumetric Shrinkage (Collapse) in Freeze-Dried Carbohydrates Above Their Glass Transition Temperature. Food Res. Int. 1995, 28, 145–151.
  • Carpenter, J. F.; Pikal, M. J.; Chang, B. S.; Randolph, T. W. Rational Design of Stable Lyophilized Protein Formulations: Some Practical Advice. Pharm. Res. 1997, 14, 969–975.
  • Nakagawa, S.; Tamiya, K.; Do, G.; Kono, S.; Ochiai, T. Observation of Glassy State Relaxation during Annealing of Frozen Sugar Solutions by X-Ray Computed Tomography. Eur. J. Pharm. Biopharm. 2018, 127, 279–287.
  • Gieseler, H.; Stärtzel, P. Controlled Nucleation in Freeze-Drying. Eur. Pharm. Rev. 2012, 17. https://www.europeanpharmaceuticalreview.com/article/15427/controlled-nucleation-in-freeze-drying/
  • Anuj, G. Short Review on Controlled Nucleation. Int. J. Drug Dev. Res. 2012, 4, 35–40.
  • Thomas, P. Controlled Ice Nucleation Moves into Manufacturing. Pharm. Manuf. 2011, article 20. https://www.pharmamanufacturing.com/articles/2011/020/
  • Acton, E.; Morris, G. J. Method and Apparatus for Freeze Drying Material. Patent Application GB 2400901 A, October 27, 2004.
  • Siew, A. Controlling Ice Nucleation During the Freezing Step of Lyophilization. Pharm. Technol. 2013, 37, 36–40.
  • Kodama, T.; Alexeenko, A. Effect of Ice Fog-Controlled Ice Nucleation on Solution Weight. LyoHub Presentation 2018. https://www.millrocktech.com/lyosight/lyobrary/white-papers-posters-presentations/. (accessed Oct 1, 2018).
  • Umbach, M. Freeze Drying Plant. Patent EP 3093597 B1, December 27, 2017.
  • Ling, W. Controlled Nucleation During Freezing Step of Freeze Drying Cycle Using Pressure Differential Ice Fog Distribution. Patent US 8839528 B2, September 23, 2014. Patent EP 2702342 B1, April 20, 2014.
  • Ling, W. Controlled Nucleation During Freezing Step of Freeze Drying Cycle Using Pressure Differential Ice Crystals Distribution from Condensed Frost. Patent US 8875413 B2, November 4, 2014.
  • Ling, W. Controlled Nucleation During Freezing Step of Freeze Drying Cycle Using Pressure Differential Water Vapor CO2 Ice Crystals. Patent US 9470453 B2, October 18, 2016.
  • GEA. Inducing Nucleation in Industrial Freeze Dryers. Manufacturing Chemist 2017 (22 Nov.). https://www.manufacturingchemist.com/news/article_page/Inducing_nucleation_in_industrial_freeze_dryers/136511.
  • Brower, J.; Lee, R.; Wexler, E.; Finley, S.; Caldwell, M.; Studer, P. New Developments in Controlled Nucleation: Commercializing VERISEQ® Nucleation Technology. In Lyophilized Biologics and Vaccines; Varshney, D., Singh, M., Eds.; Springer: New York (NY), 2015; pp. 73–90.
  • Chakravarty, P.; Lee, R. C. Method for Freeze Drying. Patent US 8549768 B2, October 8, 2013. Method for Freeze Drying and Corresponding Freeze Dryer. Patent EP 2498035 B1, July 26, 2017.
  • Lee, R. C.; Chakravarty, P. Freeze Drying Method. Patent EP 2478313 B1, October 25, 2013. Freeze Drying System. Patent Application US 20110179667 A1, July 28, 2011.
  • Azzarella, J.; Mudhivarthi, V. K.; Wexler, E.; Ganguly, A. Increasing Vial to Vial Homogeneity: An Analysis of VERISEQ® Nucleation on Production Scale Freeze Dryers. BioPharm Int. 2017, 29, 36–41.
  • Rampersad, B. M.; Sever, R. R.; Humek, B.; Gasteyer, T. H. III. Freeze-Dryer and Method of Controlling the Same. Patent US 8240065 B2, August 14, 2012.
  • Gasteyer, T. H. III; Sever, R. R.; Hunek, B.; Grinter, N.; Verdone, M. L. Method of Inducing Nucleation of a Material. Patent US 9453675 B2, September 25, 2016. Patent EP 1982133 B1, July 15, 2015.
  • Awotwe-Otoo, D.; Agarabi, C.; Read, E. K.; Lute, S.; Brorson, K. A.; Khan, M. A.; Shah, R. B. Impact of Controlled Ice Nucleation on Process Performance and Quality Attributes of a Lyophilized Monoclonal Antibody. Int. J. Pharm. 2013, 450, 70–78.
  • Gasteyer, T. H. III; Sever, R. R.; Hunek, B.; Grinter, N.; Verdone, M. L. Lyophilization System and Method. Patent US 9651305 B2, May 16, 2017. Lyophilization Method, Patent EP 1982132 B1, August 10, 2016.
  • Shon, M.; Mather, L. The Importance of Controlling Nucleation Temperature During the Freeze Step. Introduction of ControLyo™ Nucleation On-Demand Technology on the New FTS/SP Scientific™ LyoStar™3 Freeze Dryer. https://www.labrepco.com/data/userfiles/files/The-Importance-of-Controlling-Nucleation-Temperature.pdf (accessed Jan 2018).
  • Sennhenn, B.; Kramer, M. Lyophilization Method. Patent US 6684524 B1, February 3, 2004.
  • Arsiccio, A.; Barresi, A. A.; De Beer, T.; Oddone, I.; Van Bockstal, P.-J.; Pisano, R. Vacuum Induced Surface Freezing as an Effective Method for Improved Inter- and Intra-Vial Product Homogeneity. Eur. J. Pharm. Biopharm. 2018, 128, 210–219.
  • Hof, H.-G.; Schilder, G. Method for Freeze Drying a Moist Product Which is Provided with a Solvent. Patent Application EP 2728287 A3, October 19, 2016.
  • Allmendinger, A.; Schilder, G.; Mietzner, R.; Butt, Y. L.; Lümkermann, J.; Lema Martinez, C. Controlled Nucleation During Freeze Drying Using Vacuum-Induced Surface Freezing. Res. Dis. 2016. (Jan), data base no. 633018, http://www.researchdisclosure.com.
  • Wexler, E.; Brower, J. New Developments in Controlled Nucleation. Pharm. Manuf. 2015, (Oct 16), 26–29. https://www.pharmamanufacturing.com/articles/2015/new-developments-in-controlled-nucleation/.
  • Fang, R.; Tanaka, K.; Mudhivarthi, V.; Bogner, R. H.; Pikal, M. J. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying. J. Pharm. Sci. 2018, 107, 824–830.
  • Pisano, R.; Fissore, D.; Barresi, A. A., Intensification of Freeze-Drying for the Pharmaceutical and Food Industry. In Modern Drying Technology Vol.5: Process Intensification; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, 2014; Chap. 5, pp. 131–161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.