Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 13
606
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Energy, exergy and economic analyses on heat pump drying of lignite

, , &
Pages 1688-1703 | Received 13 Jul 2018, Accepted 28 Sep 2018, Published online: 02 Jan 2019

References

  • Han, S.; Chen, H.; Long, R.; Cui, X. Peak Coal in China: A Literature Review. Resour. Conser. Recycl. 2018, 129, 293–306. DOI:10.1016/j.resconrec.2016.08.012.
  • BP. BP statistical review of world energy. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
  • Li, J.; Zhuang, X.; Querol, X.; Font, O.; Moreno, N. A Review on the Applications of Coal Combustion Products in China. Int. Geol. Rev. 2018, 60, 671–716. DOI:10.1080/00206814.2017.1309997.
  • Zhao, Y.; Wang, C.; Liu, M.; Chong, D.; Yan, J. Improving Operational Flexibility by Regulating Extraction Steam of High-Pressure Heaters on a 660 MW Supercritical Coal-Fired Power Plant: A Dynamic Simulation. Appl. Energy 2018, 212, 1295–1309. DOI:10.1016/j.apenergy.2018.01.017.
  • Liu, M.; Zhang, X.; Ma, Y.; Yan, J. Thermo-Economic Analyses on a New Conceptual System of Waste Heat Recovery Integrated with an S-CO2 Cycle for Coal-Fired Power Plants. Energy Conver. Manage. 2018, 161, 243–253. DOI:10.1016/j.enconman.2018.01.049.
  • Wang, C.; Zhao, Y.; Liu, M.; Qiao, Y.; Chong, D.; Yan, J. Peak Shaving Operational Optimization of Supercritical Coal-Fired Power Plants by Revising Control Strategy for Water-Fuel Ratio. Appl. Energy 2018, 216, 212–223. DOI:10.1016/j.apenergy.2018.02.039.
  • Schobert, H. Introduction to Low-Rank Coals: Types, Resources, and Current Utilization. In Low-Rank Coals for Power Generation, Fuel and Chemical Production; Woodhead Publishing: Cambridge, 2017; pp 3–21.
  • Karthikeyan, M.; Wu, Z.-H.; Mujumdar, A.-S. Low-Rank Coal Drying Technologies Current Status and New Developments. Dry. Technol. 2009, 27, 403–415. DOI:10.1080/07373930802683005.
  • Liu, M.; Yan, J.; Chong, D.; Liu, J.; Wang, J. Thermodynamic Analysis of Pre-Drying Methods for Pre-Dried Lignite-Fired Power Plant. Energy 2013, 49, 107–118. DOI:10.1016/j.energy.2012.10.026
  • Mujumdar, A.-S. Handbook of Industrial Drying; CRC Press: Boca Raton, 2014.
  • Gui, N.; Yang, X.-T.; Tu, J.-Y.; Jiang, S.-Y. Numerical Simulation and Analysis of Particle Mixing and Conduction in Wavy Drums. Dry. Technol. 2016, 34, 91–104. DOI:10.1080/07373937.2015.1025140.
  • Hatzilyberis, K.-S.; Androutsopoulos, G.-P.; Salmas, C.-E. Indirect Thermal Drying of Lignite: Design Aspects of a Rotary Dryer. Dry. Technol. 2000, 18, 2009–2049. DOI:10.1080/07373930008917824.
  • Pusat, S.; Akkoyunlu, M.-T.; Erdem, H.-H.; Dağdaş, A. Drying Kinetics of Coarse Lignite Particles in a Fixed Bed. Fuel Process. Technol. 2015, 130, 208–213. DOI:10.1016/j.fuproc.2014.10.023.
  • Zhao, P.; Zhong, L.; Zhu, R.; Zhao, Y.; Luo, Z.; Yang, X. Drying Characteristics and Kinetics of Shengli Lignite Using Different Drying Methods. Energy Conver. Manage. 2016, 120, 330–337. DOI:10.1016/j.enconman.2016.04.105.
  • Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Sun, J.; Wang, W.; Mao, Y.; Ma, C. Coal Slime Hot Air/Microwave Combined Drying Characteristics and Energy Analysis. Fuel Process. Technol. 2017, 156, 491–499. DOI:10.1016/j.fuproc.2016.10.016.
  • Li, C.; Liao, J.; Yin, Y.; Mo, Q.; Chang, L.; Bao, W. Kinetic Analysis on the Microwave Drying of Different Forms of Water in Lignite. Fuel Process. Technol. 2018, 176, 174–181. DOI:10.1016/j.fuproc.2018.03.017.
  • Feng, L.; Tang, J.-W.; Ma, Z.-L.; Wan, Y.-Z. Effect of Mechanical Thermal Expression Drying Technology on Lignite Structure. Dry. Technol. 2017, 35, 356–362. DOI:10.1080/07373937.2016.1174938.
  • Liu, X.-C.; Hirajima, T.; Nonaka, M.; Sasaki, K. Hydrothermal Treatment Coupled with Mechanical Expression for Loy Yang Lignite Dewatering and the Microscopic Description of the Process. Dry. Technol. 2016, 34, 1471–1483. DOI:10.1080/07373937.2015.1127933.
  • Shi, Z.; Jin, L.; Zhou, Y.; Li, Y.; Hu, H. Effect of Hydrothermal Treatment on Structure and Liquefaction Behavior of Baiyinhua Coal. Fuel Process. Technol. 2017, 167, 648–654. DOI:10.1016/j.fuproc.2017.08.015.
  • Bejan, A. Advanced Engineering Thermodynamics. John Wiley & Sons: New Jersey, 2016.
  • Han, X.; Yan, J.; Karellas, S.; Liu, M.; Kakaras, E.; Xiao, F. Water Extraction from high moisture Lignite by Means of Efficient Integration of Waste Heat and Water Recovery Technologies with Flue Gas Pre-Drying System. Appl. Therm. Eng. 2017, 110, 442–456. DOI:10.1016/j.applthermaleng.2016.08.178.
  • Atsonios, K.; Violidakis, I.; Sfetsioris, K.; Rakopoulos, D.-C.; Grammelis, P.; Kakaras, E. Pre-Dried Lignite Technology Implementation in Partial Load/Low Demand Cases for Flexibility Enhancement. Energy 2016, 96, 427–436. DOI:10.1016/j.energy.2015.12.076.
  • Kakaras, E.; Ahladas, P.; Syrmopoulos, S. Computer Simulation Studies for the Integration of an External Dryer into a Greek Lignite-Fired Power Plant. Fuel 2002, 81, 583–593. DOI:10.1016/S0016-2361(01)00146-6.
  • Liu, M.; Wu, D.; Xiao, F.; Yan, J. A Novel Lignite-Fired Power Plant Integrated with a Vacuum Dryer: System Design and Thermodynamic Analysis. Energy 2015, 82, 968–975. DOI:10.1016/j.energy.2015.01.106.
  • Qin, Y.; Fu, H.; Wang, J.; Liu, M.; Yan, J. Waste Heat and Water Recovery Characteristics of Heat Exchangers for Dryer Exhaust. Dry. Technol. 2018, 36, 709–722. DOI:10.1080/07373937.2017.1351451.
  • Liu, M.; Qin, Y.; Yan, H.; Han, X.; Chong, D. Energy and Water Conservation at Lignite-Fired Power Plants Using Drying and Water Recovery Technologies. Energy Conver. Manage. 2015, 105, 118–126. DOI:10.1016/j.enconman.2015.07.069.
  • Xu, C.; Li, X.; Xu, G.; Xin, T.; Yang, Y.; Liu, W.; Wang, M. Energy, Exergy and Economic Analyses of a Novel Solar-Lignite Hybrid Power Generation Process Using Lignite Pre-Drying. Energy Conver. Manage. 2018, 170, 19–33. DOI:10.1016/j.enconman.2018.05.078.
  • Xu, C.; Bai, P.; Xin, T.; Hu, Y.; Xu, G.; Yang, Y. A Novel Solar Energy Integrated Low-Rank Coal Fired Power Generation Using Coal Pre-Drying and an Absorption Heat Pump. Appl. Energy 2017, 200, 170–179. DOI:10.1016/j.apenergy.2017.05.078.
  • Ma, Y.; Yuan, Y.; Jin, J.; Zhang, H.; Hu, X.; Shi, D. An Environment Friendly and Efficient Lignite-Fired Power Generation Process Based on a Boiler with an Open Pulverizing System and the Recovery of Water from Mill-Exhaust. Energy 2013, 59, 105–115. DOI:10.1016/j.energy.2013.06.073.
  • Caglayan, H.; Caliskan, H. Sustainability Assessment of Heat Exchanger Units for Spray Dryers. Energy 2017, 124, 741–751. DOI:10.1016/j.energy.2017.02.097.
  • Minea, V. Drying Heat Pumps – Part II: Agro-Food, Biological and Wood Products. Int. J. Refrig. 2013, 36, 659–673. DOI:10.1016/j.ijrefrig.2012.11.026.
  • Aktaş, M.; Khanlari, A.; Amini, A.; Şevik, S. Performance Analysis of Heat Pump and Infrared–Heat Pump Drying of Grated Carrot Using Energy-Exergy Methodology. Energy Conver. Manage. 2017, 132, 327–338. DOI:10.1016/j.enconman.2016.11.027.
  • Chapchaimoh, K.; Poomsa-Ad, N.; Wiset, L.; Morris, J. Thermal Characteristics of Heat Pump Dryer for Ginger Drying. Appl. Therm. Eng. 2016, 95, 491–498. DOI:10.1016/j.applthermaleng.2015.09.025.
  • Wang, D. C.; Zhang, G.; Han, Y.-P.; Zhang, J. P.; Tian, X.-L. Feasibility Analysis of Heat Pump Dryer to Dry Hawthorn Cake. Energy Conver. Manage. 2011, 52, 2919–2924. DOI:10.1016/j.enconman.2011.04.002.
  • Goh, L.-J.; Othman, M.-Y.; Mat, S.; Ruslan, H.; Sopian, K. Review of Heat Pump Systems for Drying Application. Renew. Sust. Energy Rev. 2011, 15, 4788–4796. DOI:10.1016/j.rser.2011.07.072.
  • Zhu, J.-L.; Wang, Q.-L.; Lu, X.-L. Status and Developments of Drying Low Rank Coal with Superheated Steam in China. Dry. Technol. 2015, 33, 1086–1100. DOI:10.1080/07373937.2014.942914.
  • Liu, Y.; Aziz, M.; Kansha, Y.; Tsutsumi, A. A Novel Exergy Recuperative Drying Module and Its Application for Energy-Saving Drying with Superheated Steam. Chem. Eng. Sci. 2013, 100, 392–401. DOI:10.1016/j.ces.2013.01.044.
  • Aziz, M.; Kansha, Y.; Kishimoto, A.; Kotani, Y.; Liu, Y.; Tsutsumi, A. Advanced Energy Saving in Low Rank Coal Drying Based on Self-Heat Recuperation Technology. Fuel Process. Technol. 2012, 104, 16–22. DOI:10.1016/j.fuproc.2012.06.020.
  • Liu, Y.; Ohara, H. Energy-Efficient Fluidized Bed Drying of Low-Rank Coal. Fuel Process. Technol. 2017, 155, 200–208. DOI:10.1016/j.fuproc.2016.06.008.
  • Fushimi, C.; Dewi, W.-N. Energy Efficiency and Capital Cost Estimation of Superheated Steam Drying Processes Combined with Integrated Coal Gasification Combined Cycle. J. Chem. Eng. Jpn 2015, 48, 872–880. DOI:10.1252/jcej.14we401.
  • Noroozian, A.; Mohammadi, A.; Bidi, M.; Ahmadi, M.-H. Energy, Exergy and Economic Analyses of a Novel System to Recover Waste Heat and Water in Steam Power Plants. Energy Conver. Manage. 2017, 144, 351–360. DOI:10.1016/j.enconman.2017.04.067.
  • Ahmadi, M. H.; Mehrpooya, M.; Pourfayaz, F. Exergoeconomic Analysis and Multi Objective Optimization of Performance of a Carbon Dioxide Power Cycle Driven by Geothermal Energy with Liquefied Natural Gas as Its Heat Sink. Energy Conver. Manage. 2016, 119, 422–434. DOI:10.1016/j.enconman.2016.04.062.
  • Ahmadi, M. H.; Mehrpooya, M.; Pourfayaz, F. Thermodynamic and Exergy Analysis and Optimization of a Transcritical CO2 Power Cycle Driven by Geothermal Energy with Liquefied Natural Gas as Its Heat Sink. Appl. Therm. Eng. 2016, 109, 640–652. DOI:10.1016/j.applthermaleng.2016.08.141.
  • Naseri, A.; Bidi, M.; Ahmadi, M.-H. Thermodynamic and Exergy Analysis of a Hydrogen and Permeate Water Production Process by a Solar-Driven Transcritical CO2 Power Cycle with Liquefied Natural Gas Heat Sink. Renew. Energy 2017, 113, 1215–1228. DOI:10.1016/j.renene.2017.06.082.
  • Naseri, A.; Bidi, M.; Ahmadi, M.-H.; Saidur, R. Exergy Analysis of a Hydrogen and Water Production Process by a Solar-Driven Transcritical CO2 Power Cycle with Stirling Engine. J. Clean. Prod. 2017, 158, 165–181. DOI:10.1016/j.jclepro.2017.05.005.
  • Ergün, A.; Ceylan, İ.; Acar, B.; Erkaymaz, H. Energy-exergy-ANN Analyses of Solar-Assisted Fluidized Bed Dryer. Dry. Technol. 2017, 35, 1711–1720. DOI:10.1080/07373937.2016.1271338.
  • Johnson, P.-W.; Langrish, T.-A.-G. Exergy Analysis of a Spray Dryer: Methods and Interpretations. Dry. Technol. 2018, 36, 578–596. DOI:10.1080/07373937.2017.1349790.
  • Amantea, R.-P.; Fortes, M.; Ferreira, W.-R.; Santos, G.-T. Energy and Exergy Efficiencies as Design Criteria for Grain Dryers. Dry. Technol. 2018, 36, 491–507. DOI:10.1080/07373937.2017.1409232.
  • Ahmadi, M.-H.; Ahmadi, M.; Pourfayaz, F.; Bidi, M. Thermodynamic Analysis and Optimization for an Irreversible Heat Pump Working on Reversed Brayton Cycle. Energy Conver. Manage. 2016, 110, 260–267. DOI:10.1016/j.enconman.2015.12.028.
  • Ahmadi, M.-H.; Ahmadi, M.-A.; Mehrpooya, M.; Sameti, M. Thermo-Ecological Analysis and Optimization Performance of an Irreversible Three-Heat-Source Absorption Heat Pump. Energy Conver. Manage. 2015, 90, 175–183. DOI:10.1016/j.enconman.2014.11.021.
  • Sahraie, H.; Mirani, M.-R.; Ahmadi, M.-H.; Ashouri, M. Thermo-Economic and Thermodynamic Analysis and Optimization of a Two-Stage Irreversible Heat Pump. Energy Conver. Manage. 2015, 99, 81–91. DOI:10.1016/j.enconman.2015.03.081.
  • Ahmadi, M.-H.; Ahmadi, M.-A.; Bayat, R.; Ashouri, M.; Feidt, M. Thermo-Economic Optimization of Stirling Heat Pump by Using Non-Dominated Sorting Genetic Algorithm. Energy Conver. Manage. 2015, 91, 315–322. DOI:10.1016/j.enconman.2014.12.006.
  • Moran, M.-J. Availability Analysis: A Guide to Efficient Energy Use. ASME Press: New York, 1989.
  • Wang, C.; Liu, M.; Zhao, Y.; Qiao, Y.; Yan, J. Entropy Generation Analysis on a Heat Exchanger with Different Design and Operation Factors during Transient Processes. Energy 2018, 158, 330–342. DOI:10.1016/j.energy.2018.06.016.
  • Yan, R.-D. Study on the effect of lignite drying on boiler operation economy. North Thesis, China Electric Power University, 2014. (In Chinese)
  • Wu, N.; Zhou, G.-Y.; Tu, S.-D. Technical Economic Analysis of Heat Exchangers. Chem. Ind. Eng. Progr. 2006, 25, 458–461. (In Chinese)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.