Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 14
122
Views
2
CrossRef citations to date
0
Altmetric
Articles

Sensitivity analysis pertaining to effective parameters on electrohydrodynamic drying of porous shrinkable materials

, &
Pages 1821-1832 | Received 03 Jun 2018, Accepted 25 Oct 2018, Published online: 07 Jan 2019

References

  • Mujumdar, A. S. Handbook of Industrial Drying, 3rd ed.; Taylor and Francis Group: New York, 2006.
  • Chen, X. D.; Mujumdar, A. S. Drying Technologies in Food Processing; Wiley-Blackwell: UK, 2009.
  • Singh, A.; Orsat, V.; Raghavan, V. A Comprehensive Review on Electrohydrodynamic Drying and High-Voltage Electric Field in the Context of Food and Bioprocessing. Drying Technol. 2012, 30, 1812–1820.
  • Martynenko, A.; Kudra, T.; Yue, J. Multipin EHD Dryer: Effect of Electrode Geometry on Charge and Mass Transfer. Drying Technol. 2017, 35, 1970–1980.
  • Ramachandran, M. R.; Lai, F. C. Effects of Porosity on the Performance of EHD-Enhanced Drying. Drying Technol. 2010, 28, 1477–1483.
  • Laohalertdecha, S.; Naphon, P.; Wongwises, S. A Review of Electrohydrodynamic Enhancement of Heat Transfer. Renew. Sust. Energy Rev. 2007, 11, 858–876.
  • Karami, R.; Kamkari, B.; Kashefi, K. Investigation of Corona Wind Effect on Heat and Mass Transfer Enhancement. Int. J. Phys. Math. Sci. 2011, 5, 1597–1604.
  • Dolati, F.; Amanifard, N.; Mohaddes Deylami, H. Numerical Investigation of Mass Transfer Enhancement through a Porous Body Affected by Electric Field. Drying Technol. 2018, 36, 1563–1577.
  • Kudra, T.; Martynenko, A. Energy Aspects in Electrohydrodynamic Drying. Drying Technol. 2015, 33, 1534–1540.
  • Bajgai, T. R.; Hashinaga, F. High Electric Field Drying of Japanese Radish. Drying Technol. 2001, 19, 2291–2302.
  • Bajgai, T. R.; Hashinaga, F. Drying of Spinach with a High Electric Field. Drying Technol. 2001, 19, 2331–2341.
  • Milani Shirvan, K.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R.; Vafai, K. Numerical Investigation and Sensitivity Analysis of Effective Parameters on Combined Heat Transfer Performance in a Porous Solar Cavity Receiver by Response Surface Methodology. Int. J. Heat Mass Transfer 2017, 105, 811–825.
  • Milani Shirvan, K.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R. Numerical Investigation of Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Nanofluid: A Sensitivity Analysis by Response Surface Methodology. Powder Technol. 2017, 313, 99–111.
  • Milani Shirvan, K.; Mamourian, M.; Mirzakhanlari, S.; Ellahi, R. Two Phase Simulation and Sensitivity Analysis of Effective Parameters on Combined Heat Transfer and Pressure Drop in a Solar Heat Exchanger Filled with Nanofluid by RSM. J. Mol. Liq. 2016, 220, 888–901.
  • Akbarzadeh, M.; Rashidi, S.; Bovand, M.; Ellahi, R. A Sensitivity Analysis on Thermal and Pumping Power for the Flow of Nanofluid inside a Wavy Channel. J. Mol. Liq. 2016, 220, 1–13.
  • Milani Shirvan, K.; Ellahi, R.; Mirzakhanlari, S.; Mamourian, M. Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow. Appl. Therm. Eng. 2016, 109, 761–774.
  • Hii, C. L.; Law, C. L.; Cloke, M. Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa. J. Food Eng. 2009, 90, 191–198.
  • Chen, Y.; Barthakur, N. N.; Arnold, N. P. Electrohydrodynamic (EHD) Drying of Potato Slabs. J. Food Eng. 1994, 23, 107–119.
  • Hashinaga, F.; Bajgai, T. R.; Isobe, S.; Barthakur, N. N. Electrohydrodynamic (EHD) Drying of Apple Slices. Drying Technol. 1999, 17, 479–495.
  • Basiry, M.; Esehaghbeygi, A. Electrohydrodynamic (EHD) Drying of Rapeseed (Brassica Napus L.). J. Electrost. 2010, 68, 360–363.
  • Esehaghbeygi, A.; Basiry, M. Electrohydrodynamic (EHD) Drying of Tomato Slices (Lycopersicon esculentum). J. Food Eng. 2011, 104, 628–631.
  • Alemrajabi, A. A.; Rezaee, F.; Mirhosseini, M.; Esehaghbeygi, A. Comparative Evaluation of the Effects of Electrohydrodynamic, Oven, and Ambient Air on Carrot Cylindrical Slices during Drying Process. Drying Technol. 2012, 30, 88–96.
  • Esehaghbeygi, A.; Pirnazari, K.; Sadeghi, M. Quality Assessment of Electrohydrodynamic and Microwave Dehydrated Banana Slices. LWT - Food Sci. Technol. 2014, 55, 565–571.
  • Taghian Dinani, S.; Havet, M.; Hamdami, N.; Shahedi, M. Drying of Mushroom Slices Using Hot Air Combined with an Electrohydrodynamic (EHD) Drying System. Drying Technol. 2014, 32, 597–605.
  • Cao, W.; Nishiyama, Y.; Koide, S. Electrohydrodynamic Drying Characteristics of Wheat Using High Voltage Electrostatic Field. J. Food Eng. 2004, 62, 209–213.
  • Cao, W.; Nishiyama, Y.; Koide, S.; Lu, Z. H. Drying Enhancement of Rough Rice by an Electric Field. Biosyst. Eng. 2004, 87, 445–451.
  • Defraeye, T.; Martynenko, A. Future Perspectives for Electrohydrodynamic Drying of Biomaterials. Drying Technol. 2018, 36, 1–10.
  • Žebrauskas, S.; Marčiulionis, P. Numerical Analysis of Electrohydrodynamic Air Flow in dc Corona Field. Elec. Rev. 2012, 88, 200–202.
  • Nayfeh, M. H.; Brussel, M. K. Electricity and Magnetism. Wiley: New York, 2015.
  • Cheng, D. K. Field and Wave Electromagnetics. Addison-Wesley: Boston, 2013.
  • Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena. Wiley: New York, 2006.
  • Sun, D. W. Emerging Technologies for Food Processing, 2nd ed.; Academic Press: Cambridge, MA, 2015.
  • Komeili, B.; Chang, J. S.; Harvel, G. D.; Ching, C. Y.; Brocilo, D. Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump under Negative Corona Operations. J. Electrost. 2008, 66, 342–353.
  • Salagnac, P.; Glouannec, P.; Lecharpentier, D. Numerical Modeling of Heat and Mass Transfer in Porous Medium during Combined Hot Air, Infrared and Microwaves Drying. Int. J. Heat Mass Transfer 2004, 47, 4479–4489.
  • Gonzalez, A. A.; Torres, S. S.; Lagunas, M. Multiphysics Modeling of Warm Air Drying of Potato Slices. Presented at the COMSOL Conference, Milan, Italy, 2012.
  • Wang, N.; Brennan, J. G. A Mathematical Model of Simultaneous Heat and Moisture Transfer during Drying of Potato. J. Food Eng. 1995, 24, 47–60.
  • Wang, N.; Brennan, J. G. Changes in Structure, Density and Porosity of Potato during Dehydration. J. Food Eng. 1995, 24, 61–76.
  • Wang, N.; Brennan, J. G. The Influence of Moisture Content and Temperature on the Specific Heat of Potato Measured by Differential Scanning Calorimetry. J. Food Eng. 1993, 19, 303–310.
  • Hassini, L.; Azzouz, S.; Peczalski, R.; Belghith, A. Estimation of Potato Moisture Diffusivity from Convective Drying Kinetics with Correction for Shrinkage. J. Food Eng. 2007, 79, 47–56.
  • Incropera, F. P.; DeWitt, D. P. Fundamentals of Heat and Mass Transfer. Wiley: Australia, 2002.
  • Wang, N.; Brennan, J. G. Thermal Conductivity of Potato as a Function of Moisture Content. J. Food Eng. 1992, 17, 153–160.
  • Tabatabaian, M. Comsol5 for Engineers. Mercury Learning and Information: Dulles, Virginia, 2015.
  • Dimitriadis, A. N.; Akritidis, C. B. A Model to Simulate Chopped Alfalfa Drying in a Fixed Deep Bed. Drying Technol. 2004, 22, 479–490.
  • Jin Park, K.; Vohnikova, Z.; Pedro Reis Brod, F. Evaluation of Drying Parameters and Desorption Isotherms of Garden Mint Leaves (Mentha Crispa L.). J. Food Eng. 2002, 51, 193–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.