Publication Cover
Drying Technology
An International Journal
Volume 37, 2019 - Issue 14
327
Views
11
CrossRef citations to date
0
Altmetric
Articles

Selected physical and viscoelastic properties of strawberries as a function of heated-air drying conditions

&
Pages 1833-1843 | Received 21 May 2018, Accepted 21 Oct 2018, Published online: 02 Jan 2019

References

  • Gamboa-Santos, J.; Megias-Perez, R.; Cristina Soria, A.; Olano, A.; Montilla, A.; Villamiel, M. Impact of Processing Conditions on the Kinetic of Vitamin C Degradation and 2-Furoylmethyl Amino Acid Formation in Dried Strawberries. Food Chem. 2014, 153, 164–170. DOI:10.1016/j.foodchem.2013.12.004.
  • Wojdylo, A.; Figiel, A.; Oszmianski, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. DOI:10.1021/jf802507j.
  • Agnieszka, C.; Andrzej, L. Structural Impact of Osmotically Pretreated Freeze-Dried Strawberries on Their Mechanical Properties. Int. J. Food Prop. 2010, 13, 1134–1149. DOI:10.1080/10942910903013134.
  • Doymaz, I. Convective Drying Kinetics of Strawberry. Chem. Eng. Process 2008, 47, 914–919. DOI:10.1016/j.cep.2007.02.003.
  • Szadzinska, J.; Kowalski, S. J.; Stasiak, M. Microwave and Ultrasound Enhancement of Convective Drying of Strawberries: Experimental and Modeling Efficiency. Int. J. Heat Mass Transf. 2016, 103, 1065–1074. DOI:10.1016/j.ijheatmasstransfer.2016.08.001.
  • Adak, N.; Heybeli, N.; Ertekin, C. Infrared Drying of Strawberry. Food Chem. 2017, 219, 109–116. DOI:10.1016/j.foodchem.2016.09.103.
  • Yun, X.; Wang, Y.; Li, M.; Jin, Y.; Han, Y.; Dong, T. Application of Permselective Poly(Epsilon-Caprolactone) Film for Equilibrium-Modified Atmosphere Packaging of Strawberry in Cold Storage. J. Food Process. Preserv. 2017, 41, e13247. DOI:10.1111/jfpp.13247.
  • Orak, H. H.; Aktas, T.; Yagar, H.; Isbilir, S. S.; Ekinci, N.; Sahin, F. H. Effects of Hot Air and Freeze Drying Methods on Antioxidant Activity, Colour and Some Nutritional Characteristics of Strawberry Tree (Arbutus unedo L) Fruit. Food Sci. Technol. Int. 2012, 18, 391–402. DOI:10.1177/1082013211428213.
  • Jiang, H.; Shen, Y.; Zhen, L.; Li, W.; Zhang, Q. Evaluation of Strawberries Dried by Radio Frequency Energy. Drying Technol. 2018, 1. DOI:10.1080/07373937.2018.1439503.
  • de Bruijn, J.; Rivas, F.; Rodriguez, Y.; Loyola, C.; Flores, A.; Melin, P.; Borquez, R. Effect of Vacuum Microwave Drying on the Quality and Storage Stability of Strawberries. J. Food Process. Preserv. 2016, 40, 1104–1115. DOI:10.1111/jfpp.12691.
  • Gamboa-Santos, J.; Montilla, A.; Carcel, J. A.; Villamiel, M.; Garcia-Perez, J. V. Air-Borne Ultrasound Application in the Convective Drying of Strawberry. J. Food Eng. 2014, 128, 132–139. DOI:10.1016/j.jfoodeng.2013.12.021.
  • de Bruijn, J.; Borquez, R. Quality Retention in Strawberries Dried by Emerging Dehydration Methods. Food Res. Int. 2014, 63, 42–48. DOI:10.1016/j.foodres.2014.03.029.
  • Oikonomopoulou, V. P.; Krokida, M. K. Structural Properties of Dried Potatoes, Mushrooms, and Strawberries as a Function of Freeze-Drying Pressure. Drying Technol. 2012, 30, 351–361. DOI:10.1080/07373937.2011.639475.
  • Jansson, H.; Howells, W. S.; Swenson, J. Dynamics of Fresh and Freeze-Dried Strawberry and Red Onion Quasielastic Neutron Scattering. J. Phys. Chem. B 2006, 110, 13786–13792. DOI:10.1021/jp060019+.
  • Contreras, C.; Martin-Esparza, M. E.; Chiralt, A.; Martinez-Navarrete, N. Influence of Microwave Application on Convective Drying: Effects on Drying Kinetics, and Optical and Mechanical Properties of Apple and Strawberry. J. Food Eng. 2008, 88, 55–64. DOI:10.1016/j.jfoodeng.2008.01.014.
  • Sette, P.; Salvatori, D.; Schebor, C. Physical and Mechanical Properties of Raspberries Subjected to Osmotic Dehydration and Further Dehydration by Air- and Freeze-Drying. Food Bioprod. Process. 2016, 100, 156–171. DOI:10.1016/j.fbp.2016.06.018.
  • Meda, L.; Ratti, C. Rehydration of Freeze-Dried Strawberries at Varying Temperatures. J. Food Process Eng. 2005, 28, 233–246. DOI:10.1111/j.1745-4530.2005.00404.x.
  • Doymaz, I. Infrared Drying Kinetics and Quality Characteristics of Carrot Slices. J. Food Process. Preserv. 2015, 39, 2738–2745. DOI:10.1111/jfpp.12524.
  • Xiao, H.-W.; Gao, Z.-J.; Lin, H.; Yang, W.-X. Air Impingement Drying Characteristics and Quality of Carrot Cubes. J. Food Process Eng. 2010, 33, 899–918. DOI:10.1111/j.1745-4530.2008.00314.x.
  • Ozturk, O. K.; Takhar, P. S. Stress Relaxation Behavior of Oat Flakes. J. Cereal Sci. 2017, 77, 84–89. DOI:10.1016/j.jcs.2017.08.005.
  • Akpinar, E. K.; Bicer, Y. Mathematical Modeling and Experimental Study on Thin Layer Drying of Strawberry. Int. J. Food Eng. 2006, 2, 5. DOI:10.2202/1556-3758.1045.
  • Alvarez, C.; Aguerre, R.; Gomez, R.; Vidales, S.; Alzamora, S.; Gerschenson, L. Air Dehydration of Strawberries – Effects of Blanching and Osmotic Pretreatments on the Kinetics of Moisture Transport. J. Food Eng. 1995, 25, 167–178. DOI:10.1016/0260-8774(94)00026-6.
  • Aversa, M.; Curcio, S.; Calabro, V.; Iorio, G. Experimental Evaluation of Quality Parameters during Drying of Carrot Samples. Food Bioprocess Technol. 2012, 5, 118–129. DOI:10.1007/s11947-009-0280-1.
  • Raghavan, G. S. V.; Silveira, A. M. Shrinkage Characteristics of Strawberries Osmotically Dehydrated in Combination with Microwave Drying. Drying Technol 2001, 19, 405–414. DOI:10.1081/DRT-100102913.
  • Gamboa-Santos, J.; Campañone, L. A. Application of Osmotic Dehydration and Microwave Drying to Strawberries Coated with Edible Films. Drying Technol. 2018, DOI:10.1080/07373937.2018.1481426.
  • Xu, Y.-L.; Xiong, S.-B.; Li, Y.-B.; Zhao, S.-M. Study on Creep Properties of Indica Rice Gel. J. Food Eng. 2008, 86, 10–16. DOI:10.1080/07373937.2018.1481426.
  • Sandhu, J. S.; Takhar, P. S. Effect of Frying Parameters on Mechanical Properties and Microstructure of Potato Disks. J. Text. Stud. 2015, 46, 385–397. DOI:10.1111/jtxs.12138.
  • Ozturk, O. K.; Takhar, P. S. Water Transport in Starchy Foods: Experimental and Mathematical Aspects. Trends Food Sci. Technol. 2018, 78, 11–24. DOI:10.1016/j.tifs.2018.05.015.
  • Moraga, G.; Martı́nez-Navarrete, N.; Chiralt, A. Water Sorption Isotherms and Glass Transition in Strawberries: Influence of Pretreatment. J. Food Eng. 2004, 62, 315–321. DOI:10.1016/S0260-8774(03)00245-0.
  • Simperler, A.; Kornherr, A.; Chopra, R.; Bonnet, P. A.; Jones, W.; Motherwell, W. D. S.; Zifferer, G. Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study. J. Phys. Chem. B 2006, 110, 19678–19684. DOI:10.1021/jp063134t.
  • Ciurzyńska, A.; Bajno, J.; Olsiński, I.; Pisarska, A.; Ostrowska-Ligęza, E.; Pałacha, Z.; Lenart, A. Sorption Properties and Phase Transitions Temperature of Freeze-Dried Strawberry Model Based on Hydrocolloids with a Tailored Structure. Drying Technol. 2018, 36, 1209–1223. DOI:10.1080/07373937.2017.1393824.
  • Ditudompo, S.; Takhar, P. S.; Ganjyal, G. M.; Hanna, M. A. The Effect of Temperature and Moisture on the Mechanical Properties of Extruded Cornstarch. J. Text. Stud. 2013, 44, 225–237. DOI:10.1111/jtxs.12013.
  • Li, Q.; Li, D.; Wang, L.; Ozkan, N.; Mao, Z. Dynamic Viscoelastic Properties of Sweet Potato Studied by Dynamic Mechanical Analyzer. Carbohydr. Polym 2010, 79, 520–525. DOI:10.1016/j.carbpol.2009.08.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.