Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 3
533
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Sublimation conditions as critical factors during freeze-dried probiotic powder production

, , &
Pages 333-349 | Received 19 Jun 2018, Accepted 17 Oct 2018, Published online: 04 Mar 2019

References

  • FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; Food and Agricultural of the United Nations: Ontario, Canada, 2002; pp. 1–11.
  • Bond, D.M.; Morris, J.M.; Nassar, N. Study Protocol: Evaluation of the Probiotic Lactobacillus fermentum CECT5716 for the Prevention of Mastitis in Breastfeeding Women: A Randomised Controlled Trial. BMC Pregnancy Childbirth 2017, 17, 148. DOI:10.1186/s12884-017-1330-8
  • Juárez-Tomás, M.; Gregorio, P.R.; Leccese-Terraf, M.C.; Nader-Macías, M.E.F. Encapsulation and Subsequent Freeze-Drying of Lactobacillus reuteri CRL 1324 for its Potential Inclusion in Vaginal Probiotic Formulations. Eur. J. Pharm. Sci. 2015, 79, 87–95. DOI:10.1016/j.ejps.2015.08.010.
  • Lee, Y.; Ba, Z.; Roberts, R.F.; Rogers, C.J.; Fleming, J.A.; Meng, H.; Furumoto, E.J.; Kris-Etherton, P.M. Effects of Bifidobacterium animalis Subsp. Lactis BB-12 on the Lipid/Lipoprotein Profile and Short Chain Fatty Acids in Healthy Young Adults: A Randomized Controlled Trial. Nutr. J. 2017, 16, 39. DOI:10.1186/s12937-017-0261-6.
  • Patel, A.K.; Singhania, R.R.; Pandey, A.; Chincholkar, S.B. Probiotic Bile Salt Hydrolase: Current Developments and Perspectives. Appl. Biochem. Biotechnol. 2010, 162, 166–180. DOI:10.1007/s12010-009-8738-1.
  • Cueto-Vigil, C.; Aragón-Rojas, S. Evaluation of Probiotic Potential of Lactic Acid Bacteria to Reduce in Vitro Cholesterol. Sci. Agropecu 2012, 1, 45–50.
  • Farnworth, E.R.; Champagne, C.P. Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Elsevier/Academic Press: London, 2015; pp 303–318.
  • Liu, J.; Viverette, T.; Virgin, M.; Anderson, M.; Dalal, P. A. Study of the Impact of Freezing on the Lyophilization of a Concentrated Formulation with a High Fill Depth. Pharm. Dev. Technol. 2005, 10, 261–272. DOI:10.1081/PDT-54452.
  • Courtois, F. Handbook of Food Powders; Queensland, Australia: Woodhead Publishing Limited, 2013.
  • Halim, M.; Mohd Mustafa, N.A.; Othman, M.; Wasoh, H.; Kapri, M.R.; Ariff, A.B. Effect of Encapsulant and Cryoprotectant on the Viability of Probiotic Pediococcus acidilactici ATCC 8042 during Freeze-Drying and Exposure to High Acidity, Bile Salts and Heat. LWT-Food Sci. Technol. 2017, 81, 210–216. DOI:10.1016/j.lwt.2017.04.009.
  • Li, B.; Tian, F.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Effects of Cryoprotectants on Viability of Lactobacillus reuteri CICC6226. Appl. Microbiol. Biotechnol. 2011, 92, 609–616. DOI:10.1007/s00253-011-3269-4.
  • Zayed, G.; Roos, Y.H. Influence of Trehalose and Moisture Content on Survival of Lactobacillus salivarius Subjected to Freeze-Drying and Storage. Process Biochem. 2004, 39, 1081–1086. DOI:10.1016/S0032-9592(03)00222-X.
  • Burgain, J.; Corgneau, M.; Scher, J.; Gaiani, C. Microencapsulation and Microspheres for Food Applications. Academic Press: Wageningen, 2015, pp 391–406. DOI:10.1016/B978-0-12-800350-3.00019-4.
  • Çabuk, B.; Harsa, T. S. Improved Viability of Lactobacillus acidophilus NRRL-B 4495 during Freeze-Drying in Whey Protein-Pullulan Microcapsules. J. Microencapsul. 2015, 32, 300–307. DOI:10.3109/02652048.2015.1017618.
  • Hoobin, P.; Burgar, I.; Zhu, S.; Ying, D.; Sanguansri, L.; Augustin, M.A. Water Sorption Properties, Molecular Mobility and Probiotic Survival in Freeze Dried Protein–Carbohydrate Matrices. Food Funct. 2013, 4, 1376–1386. DOI:10.1039/c3fo60112a.
  • Champagne, C.P.; Gardner, N.; Brochu, E.; Beaulieu, Y. The Freeze-Drying of Lactic Acid Bacteria. A Review. Can. Inst. Food Sci. Technol. J. 1991, 24, 118–128. DOI:10.1016/S0315-5463(91)70034-5.
  • Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Effect of Cooling Rate, Freeze-Drying, and Storage on Survival of Free and Immobilized Lactobacillus casei ATCC 393. LWT Food Sci. Technol. 2016, 69, 468–473. DOI:10.1016/j.lwt.2016.01.063.
  • Wang, Y.; Delettre, J.; Guillot, A.; Corrieu, G.; Béal, C. Influence of Cooling Temperature and Duration on Cold Adaptation of Lactobacillus acidophilus RD758. Cryobiology 2005, 50, 294–307. DOI:10.1016/j.cryobiol.2005.03.001.
  • De Vries, A.; Lopez-Gomez, Y.; Jansen, B.; Van der Linden, E.; Scholten, E. Controlling Agglomeration of Protein Aggregates for Structure Formation in Liquid Oil: A Sticky Business. ACS Appl. Mater. Interfaces 2017, 9, 10136–10147. DOI:10.1021/acsami.7b00443.
  • Kasper, J.C.; Friess, W. The Freezing Step in Lyophilization: Physico-Chemical Fundamentals, Freezing Methods and Consequences on Process Performance and Quality Attributes of Biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011, 78, 248–263. DOI:10.1016/j.ejpb.2011.03.010.
  • Searles, J.A.; Carpenter, J.F.; Randolph, T.W. Annealing to Optimize the Primary Drying Rate, Reduce Freezing-Induced Drying Rate Heterogeneity, and in Pharmaceutical Lyophilization Determine T´g in Pharmaceutical Lyophilization. J. Pharm. Sci. 2001, 90, 872–887. DOI:10.1002/jps.1040.
  • Paulo, F.; Santos, L. Design of Experiments for Microencapsulation Applications: A Review. Mater. Sci. Eng. 2017, 77, 1327–1340. DOI:10.1016/j.msec.2017.03.219.
  • Schoug, Å.; Olsson, J.; Carlfors, J.; Schnürer, J.; Håkansson, S. Freeze-Drying of Lactobacillus coryniformis Si3-Effects of Sucrose Concentration, Cell Density, and Freezing Rate on Cell Survival and Thermophysical Properties. Cryobiology 2006, 53, 119–127. DOI:10.1016/j.cryobiol.2006.04.003.
  • Patel, S.M.; Nail, S.L.; Pikal, M.J.; Geidobler, R.; Winter, G.; Hawe, A.; Davagnino, J.; Rambhatla Gupta, S. Lyophilized Drug Product Cake Appearance: What Is Acceptable? J. Pharm. Sci. 2017, 106, 1706–1721. DOI:10.1016/j.xphs.2017.03.014.
  • Hernández-Carrión, M.; Hernando, I.; Sotelo-Díaz, I.; Quintanilla-Carvajal, M.X.; Quiles, A. Use of Image Analysis to Evaluate the Effect of High Hydrostatic Pressure and Pasteurization as Preservation Treatments on the Microstructure of Red Sweet Pepper. Innov. Food Sci. Emerg. Technol. 2015, 27, 69–78. DOI:10.1016/j.ifset.2014.10.011.
  • Tournier, C.; Grass, M.; Zope, D.; Salles, C.; Bertrand, D. Characterization of Bread Breakdown during Mastication by Image Texture Analysis. J. Food Eng. 2012, 113, 615–622. DOI:10.1016/j.jfoodeng.2012.07.015.
  • Quintanilla-Carvajal, M.X.; Meraz-Torres, L.S.; Alamilla-Beltrán, L.; Chanona-Pérez, J.J.; Terres-Rojas, E.; Hernández-Sánchez, H.; Jiménez-Aparicio, J.; Gutiérrez-López, G.F. Morphometric Characterization of Spray-Dried Microcapsules before and after a-Tocopharol Extraction. Rev. Mex. Ing. Química. 2011, 10, 301–312.
  • Cueto-Vigil, C.; Acuña-Monsalve, Y.; Valenzuela-Riaño, J. Evaluación in Vitro Del Potencial Probiótico de Bacterias Ácido Lácticas Aisladas de Suero Costeño. Actu. Biol. 2010, 32, 129–138.
  • Nireesha, G.R.; Divya, L.; Sowmya, C.; Venkateshan, N.; Babu, M.N.; Lavakumar, V. Lyophilization/Freeze Drying—A Review. World J. Pharm. Res. 2013, 3, 87–98.
  • Bergenholtz, Å.S.; Wessman, P.; Wuttke, A.; Håkansson, S. A Case Study on Stress Preconditioning of a Lactobacillus Strain Prior to Freeze-Drying. Cryobiology 2012, 64, 152–159. DOI:10.1016/j.cryobiol.2012.01.002.
  • Keivani Nahr, F.; Mokarram, R.R.; Hejazi, M.A.; Ghanbarzadeh, B.; Sowti Khiyabani, M.; Zoroufchi Benis, K. Optimization of the Nanocellulose Based Cryoprotective Medium to Enhance the Viability of Freeze Dried Lactobacillus plantarum Using Response Surface Methodology. LWT Food Sci. Technol. 2015, 64, 326–332. DOI:10.1016/j.lwt.2015.06.004.
  • Otero, C.; Espeche, C.; Nader-Macı, E. Optimization of the Freeze-Drying Media and Survival throughout Storage of Freeze-Dried Lactobacillus gasseri and Lactobacillus delbrueckii Subsp. delbrueckii for Veterinarian Probiotic Applications. Process Biochem. 2007, 42, 1406–1411. DOI:10.1016/j.procbio.2007.07.008.
  • Henao-Ardila, A.; Quintanilla-Carvajal, M.X.; Klotz-Ceberio, B.; Serna-Jiménez, J. Evaluation of Inhibition of the Candida Intermedia Due to the Effect of Supernatants from Bioprotector and Their Synergistics Effect. Rev. Mex. Ing. Química 2015, 14, 373–381.
  • Jeong, I.J.; Kim, K.J. An Interactive Desirability Function Method to Multiresponse Optimization. Eur. J. Oper. Res. 2009, 195, 412–426. DOI:10.1016/j.ejor.2008.02.018.
  • Fritzen-Freire, C.B.; Prudêncio, E.S.; Amboni, R.D.M.C.; Pinto, S.S.; Negrão-Murakami, A.N.; Murakami, F.S. Microencapsulation of Bifidobacteria by Spray Drying in the Presence of Prebiotics. Food Res. Int. 2012, 45, 306–312. DOI:10.1016/j.foodres.2011.09.020.
  • Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. DOI:10.1109/TSMC.1973.4309314.
  • Yonekura, L.; Sun, H.; Soukoulis, C.; Fisk, I. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in Matrices Containing Soluble Fibre by Spray Drying: Technological Characterization, Storage Stability and Survival after in Vitro Digestion. J. Funct. Foods 2014, 6, 205–214. DOI:10.1016/j.jff.2013.10.008.
  • González-Ferrero, C.; Irache, J.M.; González-Navarro, C.J. Soybean Protein-Based Microparticles for Oral Delivery of Probiotics with Improved Stability During Storage and Gut Resistance. Food Chem. 2018, 239, 879–888. DOI:10.1016/j.foodchem.2017.07.022.
  • Tsironi, T.; Dermesonlouoglou, E.; Giannoglou, M.; Gogou, E.; Katsaros, G.; Taoukis, P. Shelf-Life Prediction Models for Ready-to-Eat Fresh Cut Salads: Testing in Real Cold Chain. Int. J. Food Microbiol. 2017, 240, 131–140. DOI:10.1016/j.ijfoodmicro.2016.09.032.
  • Klindt-Toldam, S.; Larsen, S.K.; Saaby, L.; Olsen, L.R.; Svenstrup, G.; Müllertz, A.; Knøchel, S.; Heimdal, H.; Nielsen, D.S.; Zieli, D. Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 Encapsulated in Chocolate during in Vitro Simulated Passage of the Upper Gastrointestinal Tract. LWT Food Sci. Technol. 2016, 74, 404–410. DOI:10.1016/j.lwt.2016.07.053.
  • Chang, B.S.; Kendrick, B.S.; Carpenter, J.F. Surface-Induced Denaturation of Proteins during Freezing and Its Inhibition by Surfactants. J. Pharm. Sci. 1996, 85, 1325–1330. DOI:10.1021/js960080y.
  • Zhao, G.; Zhang, G. Effect of Protective Agents, Freezing Temperature, Rehydration Media on Viability of Malolactic Bacteria Subjected to Freeze-Drying. J. Appl. Microbiol. 2005, 99, 333–338. DOI:10.1111/j.1365-2672.2005.02587.x.
  • Fonseca, F.; Béal, C.; Corrieu, G. Operating Conditions that Affect the Resistance of Lactic Acid Bacteria to Freezing and Frozen Storage. Cryobiology 2001, 43, 189–198. DOI:10.1006/cryo.2001.2343.
  • Armitage, W.J. Cryopreservation of Animal Cells. Symp. Soc. Exp. Biol. 1987, 41, 379– 393.
  • Haque, M.A.; Aldred, P.; Chen, J.; Barrow, C.J.; Adhikari, B. Comparative Study of Denaturation of Whey Protein Isolate (WPI) in Convective Air Drying and Isothermal Heat Treatment Processes. Food Chem. 2013, 141, 702–711. DOI:10.1016/j.foodchem.2013.03.035.
  • Chandrapala, J.; Duke, M.C.; Gray, S.R.; Zisu, B.; Weeks, M.; Palmer, M.; Vasiljevic, T. Properties of Acid Whey as a Function of pH and Temperature. J. Dairy Sci. 2015, 98, 4352–4363. DOI:10.3168/jds.2015-9435.
  • Champagne, C.P.; Ross, R.P.; Saarela, M.; Hansen, K.F.; Charalampopoulos, D. Recommendations for the Viability Assessment of Probiotics as Concentrated Cultures and in Food Matrices. Int. J. Food Microbiol. 2011, 149, 185–193. DOI:10.1016/j.ijfoodmicro.2011.07.005.
  • Wang, W.; Zhong, Q. Properties of Whey Protein–Maltodextrin Conjugates as Impacted by Powder Acidity during the Maillard Reaction. Food Hydrocoll 2014, 38, 85–94. DOI:10.1016/j.foodhyd.2013.11.018.
  • Dolly, P.; Anishaparvin, A.; Joseph, G.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) by Spray-Freeze-Drying Method and Evaluation of Survival in Simulated Gastrointestinal Conditions. J. Microencapsul. 2011, 28, 568–574. DOI:10.3109/02652048.2011.599435.
  • Patel, S.M.; Doen, T.; Pikal, M.J. Determination of End Point of Primary Drying in Freeze-Drying Process Control. AAPS Pharm. Sci. Tech. 2010, 11, 73–84. DOI:10.1208/s12249-009-9362-7.
  • Erdem, Ö.; Gültekin-Özgüven, M.; Berktaş, I.; Erşan, S.; Tuna, H.E.; Karadağ, A.; Özçelik, B.; Güneş, G.; Cutting, S.M. Development of a Novel Synbiotic Dark Chocolate Enriched with Bacillus indicus HU36, Maltodextrin and Lemon Fiber: Optimization by Response Surface Methodology. LWT Food Sci. Technol. 2014, 56, 187–193. DOI:10.1016/j.lwt.2013.10.020.
  • Perdana, J.; Bereschenko, L.; Fox, M.B.; Kuperus, J.H.; Kleerebezem, M.; Boom, R.M.; Schutyser, M.I. Dehydration and Thermal Inactivation of Lactobacillus plantarum WCFS1: Comparing Single Droplet Drying to Spray and Freeze Drying. Food Res. Int. 2013, 54, 1351–1359. DOI:10.1016/j.foodres.2013.09.043.
  • De Castro-Cislaghi, F.P.; Silva, C.D.R.E.; Fritzen-Freire, C.B.; Lorenz, J.G.; Sant’Anna, E.S. Bifidobacterium Bb-12 Microencapsulated by Spray Drying with Whey: Survival under Simulated Gastrointestinal Conditions, Tolerance to NaCl, and Viability during Storage. J. Food Eng. 2012, 113, 186–193. DOI:10.1016/j.jfoodeng.2012.06.006.
  • Heidebach, T.; Först, P.; Kulozik, U. Influence of Casein-Based Microencapsulation on Freeze-Drying and Storage of Probiotic Cells. J. Food Eng. 2010, 98, 309–316. DOI:10.1016/j.jfoodeng.2010.01.003.
  • Zhu, S.C.; Ying, D.Y.; Sanguansri, L.; Tang, J.W.; Augustin, M.A. Both Stereo-Isomers of Glucose Enhance the Survival Rate of Microencapsulated Lactobacillus rhamnosus GG during Storage in the Dry State. J. Food Eng. 2013, 116, 809–813. DOI:10.1016/j.jfoodeng.2013.01.028.
  • Gardiner, G.E.; O'Sullivan, E.; Kelly, J.; Auty, M.A.E.; Fitzgerald, G.F.; Collins, J.K.; Ross, R.P.; Stanton, C. Comparative Survival Rates of Human-Derived Probiotic Lactobacillus paracasei and L. salivarius Strains during Heat Treatment and Spray Drying. Appl. Environ. Microbiol. 2000, 66, 2605–2612. DOI:10.1128/AEM.66.6.2605-2612.2000.
  • Wirunpan, M.; Savedboworn, W.; Wanchaitanawong, P. Survival and Shelf Life of Lactobacillus lactis 1464 in Shrimp Feed Pellet after Fluidized Bed Drying. Agric. Nat. Resour 2016, 50, 1–7. DOI:10.1016/j.anres.2016.01.001.
  • Manzocco, L. The Acceptability Limit in Food Shelf Life Studies. Crit. Rev. Food Sci. Nutr 2016, 56, 1640–1646. DOI:10.1080/10408398.2013.794126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.