767
Views
38
CrossRef citations to date
0
Altmetric
Articles

Ultrasound- and microwave-assisted intermittent drying of red beetroot

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 93-107 | Received 29 Jan 2019, Accepted 23 May 2019, Published online: 07 Jun 2019

References

  • Sun, D.-W. Emerging Technologies for Food Processing; Elsevier: London, 2014.
  • Andrés, A.; Bilbao, C.; Fito, P. Drying Kinetics of Apple Cylinders under Combined Hot Air-Microwave Dehydration. J. Food Eng. 2004, 63, 71–78. DOI:10.1016/S0260-8774(03)00284-X.
  • Łechtańska, J. M.; Szadzińska, J.; Kowalski, J. Microwave- and Infrared-Assisted Convective Drying of Green Pepper: Quality and Energy Considerations. Chem. Eng. Process. 2015, 98, 155–164. DOI:10.1016/j.cep.2015.10.001.
  • Chua, K. J.; Chou, S. K. A Comparative Study between Intermittent Microwave and Infrared Drying of Bioproducts. Int. J. Food Sci. Technol. 2005, 40, 23–39. DOI:10.1111/j.1365-2621.2004.00903.x.
  • Strumiłło, C.; Jones, P.; Żyłła, R. J. Energy Aspects in Drying. In Handbook of Industrial Drying, 3rd ed.; Mujumdar, A. S., Ed.; CRC Press: Boca Raton, 2006; pp 1075–1102.
  • García-Pérez, J. V.; Cárcel, J. A.; De la Fuente-Blanco, S.; Riera-Franco de Sarabia, E. Ultrasonic Drying of Foodstuff in a Fluidized Bed: Parametric Study. Ultrasonics 2006, 44, e539–e543. DOI:10.1016/j.ultras.2006.06.059.
  • Kowalski, S. J.; Mierzwa, D. US-Assisted Convective Drying of Biological Materials. Drying Technol. 2015, 33, 1601–1613. DOI:10.1080/07373937.2015.1026985.
  • Gallego-Juárez, J. A. Some Applications of Air-Borne Power Ultrasound to Food Processing. In Ultrasound in Food Processing, 1st ed.; Povey, M. J. W., Mason, T. J., Eds.; Thomson Science: Glasgow, 1998; pp 127–143.
  • Sabarez, H. T.; Gallego-Juárez, J. A.; Riera, E. Ultrasonic-Assisted Convective Drying of Apple Slices. Drying Technol. 2012, 30, 989–997. DOI:10.1080/07373937.2012.677083.
  • Ortuño, C.; Perez-Munuera, I.; Puig, A.; Riera, E.; García-Perez, J. V. Influence of Power Ultrasound Application on Mass Transport and Microstructure of Orange Peel during Hot Air Drying. Phys. Proc. 2010, 3, 153–159. DOI:10.1016/j.phpro.2010.01.022.
  • Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound – a Review. Trends Food Sci. Technol. 2016, 56, 126–141. DOI:10.1016/j.tifs.2016.08.003.
  • Mohapatra, D.; Mishra, S. Current Trends in Drying and Dehydration of Foods. In Food Engineering (Food Science and Technology), UK ed.; Brendan, C. S., Ed.; Nova Science Publishers, Inc.: New York, NY, 2011.; pp 311–352.
  • Janowicz, M.; Kowalska, H.; Lenart, A. Przyszłość Przekąsek Owocowych i Warzywnych. (Future of Fruit and Vegetable Snacks). Ferment. Fruits Vegetable Ind. 2012, 2, 9–11. (in Polish)
  • Parosa, R.; Grześkowiak, P.; Kowalczyk, K.; Ziętek, P, PROMIS‐TECH LTD, Wrocław, Poland. The Process of Drying Fruits, Vegetables and Herbs by Microwaves in Low Pressure – General Concept and Optimization. Presented at the 4th European Drying Conference, Paris, France, Oct 2–4, 2013.
  • Luikov, A. V. Heat and Mass Transfer in Capillary-Porous Bodies; Pergamon Press: New York, NY, 1966.
  • Chin, S. K.; Law, C. L. Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma tsugae Murrill. Drying Technol. 2010, 28, 1457–1465. DOI:10.1080/07373937.2010.482707.
  • Pham, N. D.; Ghnimi, S.; Abesinghe, L.; Nishani, A. M.; Joardder, M. U. H.; Petley, T.; Muller, S.; Karim, M. A. Effects of Process Conditions of Intermittent Drying on Quality of Food Materials. In Intermittent and Nonstationary Drying Technologies: Principles and Applications, 1st ed.; Karim, M. A., Law. C.-L., Eds.; CRC Press: Boca Raton, FL, 2017; pp 97–121.
  • Karim, A.; Law, C.-L. Intermittent and Nonstationary Drying Technologies: Principles and Applications; CRC Press: Boca Raton, FL, 2017.
  • Sikorski, Z. E. Chemia Żywnosci (Food Chemistry); WNT: Warsaw, Poland, 2007. (in Polish)
  • Perera, C. O. Selected Quality Attributes of Dried Foods. Drying Technol. 2005, 23, 717–730. DOI:10.1081/DRT-200054180.
  • Nowak, D.; Kidoń, M.; Syta, M. Assessing Changes in Antioxidant Activity of Dried Red Beet and Celeriac Depending on Individual Operations Applied. Food. Sci. Technol. Qual. 2008, 4, 227–235. (in Polish)
  • Gonçalves, L. C. P.; de Souza Trassi, M. A.; Lopes, N. B.; Dörr, F. A.; dos Santos, M. T.; Baader, W. J.; Oliveira, V. X., Jr.; Bastos, E. L. A Comparative Study of the Purification of Betanin. Food Chem. 2012, 131, 231–238. DOI:10.1016/j.foodchem.2011.08.067.
  • Georgiev, V. G.; Weber, J.; Kneschke, E. M.; Denev, P. N.; Bley, T.; Pavlov, A. I. Antioxidant Activity and Phenolic Content of Betalain Extracts from Intact Plants and Hairy Root Cultures of the Red Beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods Hum. Nutr. 2010, 65, 105–111. DOI:10.1007/s11130-010-0156-6.
  • Mosiewicz, R. Polish Paradox. Ferment. Fruit Vegetable Ind. 2003, 47, 4. (in Polish)
  • Kowalski, S. J.; Mierzwa, D. Convective Drying in Combination with Microwave and IR Drying for Biological Materials. Drying Technol. 2009, 27, 1292–1301. DOI:10.1080/07373930903207712.
  • Kowalski, S. J.; Szadzińska, J.; Łechtańska, J. Non-Stationary Drying of Carrot: Effect on Product Quality. J. Food Eng. 2013, 118, 393–399. DOI:10.1016/j.jfoodeng.2013.04.028.
  • Kowalski, S. J.; Szadzińska, J.; Pawłowski, A. Ultrasonic-Assisted Osmotic Dehydration of Carrot Followed by Convective Drying with Continuous and Intermittent Heating. Drying Technol. 2015, 33, 1570–1580. DOI:10.1080/07373937.2015.1012265.
  • Ertekin, C.; Firat, M. Z. A Comprehensive Review of Thin-Layer Drying Models Used in Agricultural Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 701–717. DOI:10.1080/10408398.2014.910493.
  • Devore, J. L. Probability and Statistics for Engineering and the Sciences; Cengage Learning: Boston, 2015.
  • Lopez, A.; Iguaz, A.; Esnoz, A.; Virseda, P. Thin-Layer Drying Behaviour of Vegetable Wastes from Wholesale Market. Drying Technol. 2000, 18, 995–1006. DOI:10.1080/07373930008917749.
  • Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, 1976.
  • Onwude, D. I.; Norhashila, H.; Rimfiel, B. J.; Nawi, N. M.; Abdan, K. Modeling the Thin‐Layer Drying of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. DOI:10.1111/1541-4337.12196.
  • Nilsson, T. Studies into the Pigments in Beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.). Lantbrukshogskolans Annaler 1970, 36, 179–219.
  • Kita, A.; Figiel, A.; Carbonell-Barrachina, A.; Gwozdziowska, M. Texture Profile Analysis [TPA] of Hazelnuts under Different Thermal Treatment. Int. Agrophys. 2009, 23, 39–43.
  • Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave- and Ultrasound-Assisted Convective Drying of Raspberries: Drying Kinetics and Microstructural Changes. Drying Technol. 2019, 37, 1–12. DOI:10.1080/07373937.2018.1433199.
  • Garcia-Perez, J. V.; Ortuño, C.; Puig, A.; Carcel, J. A.; Perez-Munuera, I. Ehnancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food Bioprocess Technol. 2012, 5, 2256–2265. DOI:10.1007/s11947-011-0645-0.
  • Méndez, E. K.; Orrego, C. E.; Manrique, D. L.; Gonzalez, J. D.; Vallejo, D. Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.). Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 1100–1105.
  • Kumar, Y.; Khan, M. A.; Kumar Patel, K. Effect of Microwave on Fluidized Bed Drying of Beetroot (Beta vulgaris L.). Am. J. Eng. Res. 2014, 3, 267–273.
  • Szadzińska, J.; Łechtańska, J.; Kowalski, S. J.; Stasiak, M. The Effect of High Power Airborne Ultrasound and Microwaves on Convective Drying Effectiveness and Quality of Green Pepper. Ultrason. Sonochem. 2017, 34, 531–539. DOI:10.1016/j.ultsonch.2016.06.030.
  • Szadzińska, J.; Kowalski, S. J.; Stasiak, M. Microwave and Ultrasound Enhancement of Convective Drying of Strawberries: Experimental and Modeling Efficiency. Int. J. Heat Mass Transf. 2016, 103, 1065–1074. DOI:10.1016/j.ijheatmasstransfer.2016.08.001.
  • Schössler, K.; Jäger, H.; Knorr, D. Novel Contact Ultrasound System for the Accelerated Freeze-Drying of Vegetables. Innov. Food Sci. Emerg. 2012, 16, 113–120. DOI:10.1016/j.ifset.2012.05.010.
  • Khmelev, V. N.; Shalunov, A. V.; Barsukov, R. V.; Abramenko, D. S.; Lebedev, A. N. Studies of Ultrasonic Dehydration Efficiency. J. Zhejiang Univ. Sci. A 2011, 12, 247–254. DOI:10.1631/jzus.A1000155.
  • Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots – Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018, 48, 249–258. DOI:10.1016/j.ultsonch.2018.05.040.
  • Corzo, O.; Bracho, N.; Alvarez, C. Determination of Suitable Thin Layer Model for Air Drying of Mango Slices (Mangifera indica L.) at Different Air Temperatures and Velocities. J. Food Process Eng. 2011, 32, 332–350. DOI:10.1111/j.1745-4530.2009.00360.x.
  • Cárcel, J. A.; Garcia-Perez, J. V.; Riera, E.; Mulet, A. Improvement of Convective Drying of Carrot by Applying Power Ultrasound-Influence of Mass Load Density. Drying Technol. 2011, 29, 174–182. DOI:10.1080/07373937.2012.677083.
  • Mierzwa, D.; Szadzińska, J.; Pawłowski, A.; Pashminehazar, R.; Kharaghani, A. Nonstationary Convective Drying of Raspberries, Assisted by Microwaves and Ultrasound. Drying Technol. 2019, 37, 988–1001. DOI:10.1080/07373937.2018.1481087.
  • Wang, J.; Xi, Y. S. Drying Characteristics and Drying Quality of Carrot Using a Two-Stage Microwave Process. J. Food Eng. 2005, 68, 505–511. DOI:10.1016/j.jfoodeng.2004.06.027.
  • Kowalski, S. J.; Szadzińska, J. Kinetics and Quality Aspects of Beetroots Dried in Non-Stationary Conditions. Drying Technol. 2014, 32, 1310–1318. DOI:10.1080/07373937.2014.915555.
  • Fijałkowska, A.; Nowacka, M.; Witrowa-Rajchert, D. Effect of Ultrasound Waves on Drying Process and Selected Properties of Beetroot Tissue. Food Sci. Technol. Qual. 2015, 2, 138–149. DOI:10.15193/zntj/2015/99/028.
  • Junqueira, J. R. J.; Corrêa, J. L. G.; Ernesto, D. B. Microwave, Convective, and Intermittent Microwave–Convective Drying of Pulsed Vacuum Osmodehydrated Pumpkin Slices. J. Food Process. Preserv. 2017, 41, e13250. DOI:10.1111/jfpp.13250.
  • Figiel, A. Drying Kinetics and Quality of Beetroots Dehydrated by Combination of Convective and Vacuum-Microwave Methods. J. Food Eng. 2010, 98, 461–470. DOI:10.1016/j.jfoodeng.2010.01.029.
  • Chong, C. H.; Figiel, A.; Law, C. L.; Wojdyło, A. Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques. Food Bioprocess Technol. 2014, 7, 975–989. DOI:10.1007/s11947-013-1123-7.
  • M. S, R. Food Properties Handbook; CRC Press: Boca Raton, FL, 2009.
  • Erle, U. D. Using Microwave Processing. In The Microwave Processing of Foods, 2nd ed.; Shubert, H., Regier, M., Eds.; Woodhead Publishing Ltd.: Cambridge, 2005; pp 142–152. DOI:10.1533/9781845690212.2.142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.