Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 9
667
Views
15
CrossRef citations to date
0
Altmetric
Articles

Evaluation of physicochemical composition and bioactivity of a red seaweed (Pyropia orbicularis) as affected by different drying technologies

ORCID Icon, , , , , & show all
Pages 1218-1230 | Received 24 May 2018, Accepted 04 Jun 2019, Published online: 19 Jun 2019

References

  • Astorga-España, M. S.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E. M.; Díaz-Romero, C. Amino Acid Content in Seaweeds from the Magellan Straits (Chile). J. Food Comp. Anal. 2016, 53, 77–84. DOI: 10.1016/j.jfca.2016.09.004.
  • Souza, W. S. B.; Cerqueira, M. A.; Martins, J. T.; Quintas, M. A. C.; Ferreira, A. C. S.; Teixeira, J. A.; Vicente, A. A. Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts. J. Agric. Food Chem. 2011, 59, 5589–5594. DOI: 10.1021/jf200999n.
  • Agregán, R.; Munekata, P. E.; Domínguez, R.; Carballo, J.; Franco, D.; Lorenzo, J. M. Proximate Composition, Phenolic Content and In Vitro Antioxidant Activity of Aqueous Extracts of the Seaweeds Ascophyllum Nodosum, Bifurcaria Bifurcata and Fucus Vesiculosus. Effect of Addition of the Extracts on the Oxidative Stability of Canola Oil under Accelerated Storage Conditions. Food Res. Int. 2017, 99, 986–994. DOI: 10.1016/j.foodres.2016.11.009.
  • Bocanegra, A.; Bastida, S.; Benedí, J.; Ródenas, S.; Sánchez-Muniz, F. J. Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds. J. Med. Food. 2009, 12, 236–258. DOI: 10.1089/jmf.2008.0151.
  • Neoh, Y. Y.; Matanjun, P.; Lee, J. S. Comparative Study of Drying Methods on Chemical Constituents of Malaysian Red Seaweed. Drying Technol. 2016, 34, 1745–1751. DOI: 10.1080/07373937.2016.1212207.
  • Uribe, E.; Vega-Gálvez, A.; Heredia, V.; Pastén, A.; Di Scala, K. An Edible Red Seaweed (Propia Orbicularis): Influence of Vacuum Drying on Physicochemical Composition, Bioactive Compounds, Antioxidant Capacity, and Pigments. J. Appl. Phycol. 2018, 30, 673–683. DOI: 10.1007/s10811-017-1240-1.
  • Tala, F.; Chow, F. Phenology and Photosynthetic Performance of Porphyra Spp. (Bangiophyceae, Rhodophyta): Seasonal and Latitudinal Variation in Chile. Aquat. Bot. 2014, 113, 107–116. DOI: 10.1016/j.aquabot.2013.11.005.
  • Chen, C.-L.; Chang, J.-S.; Lee, D.-J. Dewatering and Drying Methods for Microalgae. Drying Technol. 2015, 33, 443–454. DOI: 10.1080/07373937.2014.997881.
  • Show, K.-Y.; Lee, D.-J.; Mujumdar, A. S. Advances and Challenges on Algae Harvesting and Drying. Drying. Technol. 2015, 33, 386–394.
  • Sabarez, H. Drying of Food Materials. Reference Module in Food Sciences; Elsevier, 2016; pp 1–10. DOI: 10.1016/B978-0-08-100596-5.03416-8.
  • Karam, M. C.; Petit, J.; Zimmer, D.; Djantou, E. B.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. DOI: 10.1016/j.jfoodeng.2016.05.001.
  • Kumar, M.; Sansaniwal, S. K.; Khatak, P. Progress in Solar Dryers for Drying Various Commodities. Renew. Sustain. Energy Rev. 2016, 55, 346–360. DOI: 10.1016/j.rser.2015.10.158.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S. Trends in Processing Technologies for Dried Aquatic Products. Drying Technol. 2011, 29, 382–394. DOI: 10.1080/07373937.2011.551624.
  • Sablani, S. S. Drying of Fruits and Vegetables: Retention of Nutritional/Functional Quality. Drying Technol. 2006, 24, 123–135. DOI: 10.1080/07373930600558904.
  • Chan, J. C.-C.; Cheung, P. C.-K.; Ang, P. O. Comparative Studies on the Effect of Three Drying Methods on the Nutritional Composition of Seaweed Sargassum Hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 1997, 45, 3056–3059. DOI: 10.1021/jf9701749.
  • Wong, K.; Cheung, P. C. Influence of Drying Treatment on Three Sargassum Species. J. Appl. Phycol. 2001, 13, 43–50.
  • Ling, A. L. M.; Yasir, S.; Matanjun, P.; Fadzelly, M.; Bakar, A. Effect of Different Drying Techniques on the Phytochemical Content and Antioxidant Activity of Kappaphycus Alvarezii. J. Appl. Phycol. 2015, 27, 1717–1723. DOI: 10.1007/s10811-014-0467-3.
  • Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of Different Drying Temperatures on the Moisture and Phytochemical Constituents of Edible Irish Brown Seaweed. LWT-Food Sci. Technol. 2011, 44, 1266–1272. DOI: 10.1016/j.lwt.2010.12.022.
  • Matanjun, P.; Mohamed, S.; Mustapha, N. M.; Muhammad, K. Nutrient Content of Tropical Edible Seaweeds, Eucheuma cottoni, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 2009, 21, 75–80. DOI: 10.1007/s10811-008-9326-4.
  • Arslan, D.; Özcan, M. M. Evaluation of Drying Methods with respect to Drying Kinetics, Mineral Content, and Color Characteristics of Savory Leaves. Food Bioprocess Technol. 2012, 5, 983–991. DOI: 10.1007/s11947-010-0498-y.
  • AOAC. Official Method of Analysis. Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Washington, DC, 1990.
  • Wright, K. H.; Pike, O. A.; Fairbanks, D. J.; Huber, S. C. Composition of Atriplex hortensis, Sweet and Bitter Chenopodium quinoa Seeds. J. Food Sci. 2002, 67, 1383–1385. DOI: 10.1111/j.1365-2621.2002.tb10294.x.
  • Hartman, L.; Lago, A. Rapid Preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476.
  • Beer, S.; Eshel, A.; A. Determining Phycoerythrin and Phycocyanin Concentrations in Aqueous Crude Extracts of Red Algae. Aust. J. Mar. Freshwater Res. 1985, 36, 785–792. DOI: 10.1071/MF9850785.
  • Jeffrey, S. W.; Humphrey, G. F. New Spectrophotometric Equation for Determining Chlorophyll a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. DOI: 10.1016/S0015-3796(17)30778-3.
  • Chan, P. T.; Matanjun, P. Chemical Composition and Physicochemical Properties of Tropical Red Seaweed, Gracilaria Changii. Food Chem. 2017, 221, 302–310. DOI: 10.1016/j.foodchem.2016.10.066.
  • Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J. A.; Deemer, E. K. Analysis of Antioxidant Activies of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. DOI: 10.1021/jf0116606.
  • Chuah, A. M.; Lee, Y.-C.; Yamaguchi, T.; Takamura, H.; Yin, L.-J.; Matoba, T. Effect of Cooking on the Antioxidant Properties of Coloured Peppers. Food Chem. 2008, 111, 20–28. DOI: 10.1016/j.foodchem.2008.03.022.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT–Food Sci. Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Zhang, L.; Li, J.; Hogan, S.; Chung, H.; Welbaum, G. E.; Zhou, K. Inhibitory Effect of Raspberries on Starch Digestive Enzyme and Their Antioxidant Properties and Phenolic Composition. Food Chem. 2010, 119, 592–599. DOI: 10.1016/j.foodchem.2009.06.063.
  • Kaymak, H. C.; Ozturk, S.; Ercisli, S.; Guvenc, I. In Vitro Antibacterial Activities of Black and White Radishes (Raphanus sativus L.). Biol.-Physiol. Plant 2015, 68, 201–208.
  • Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical Composition and Functional Properties of Ulva Lactuca Seaweed Collected in Tunisia. Food Chem. 2011, 128, 895–901. DOI: 10.1016/j.foodchem.2011.03.114.
  • Schmid, M.; Guihéneuf, F.; Stengel, D. B. Evaluation of Food Grade Solvents for Lipid Extraction and Impact of Storage Temperature on Fatty Acid Composition of Edible Seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta). Food Chem. 2016, 208, 161–168. DOI: 10.1016/j.foodchem.2016.03.123.
  • Liman, M. G.; Abdullahi, A. S.; Maigoro, A. L.; Umar, K. J. Effects of Three Drying Techniques on Mineral Composition of Some Leafy Garden Vegetables. IOSR J. Appl. Chem. 2014, 7, 38–42. DOI: 10.9790/5736-07123842.
  • Duan, X.; Ren, G.-Y.; Liu, L.-L.; Zhu, W.-X.; Liu, Y.-H. The Influences of Drying Process on Crude Protein Content of Naked Oat Cut Herbage (Avena nuda L.), Drying Technol. 2014, 32, 321–327. DOI: 10.1080/07373937.2013.829488.
  • FAO/WHO. Guidelines on Nutrition Labelling; Rome, 2013.
  • Rioux, L.-E.; Beaulieu, L.; Turgeon, S. L. Seaweeds: A Traditional Ingredients for New Gastronomic Sensation. Food Hydrocoll. 2017, 68, 255–265. DOI: 10.1016/j.foodhyd.2017.02.005.
  • Moreira, R.; Chenlo, F.; Sineiro, J.; Arufe, S.; Sexto, S. Drying Temperature Effect on Powder Physical Properties and Aqueous Extract Characteristics of Fucus Vesiculosus. J. Appl. Phycol. 2016, 28, 2485–2494. DOI: 10.1007/s10811-015-0744-9.
  • Fernández-Rojas, B.; Medina-Campos, O.; Hernández-Pando, R.; Negrette-Guzmán, M.; Huerta-Yepez, S.; Pedraza-Chaverri, J. C-Phycocyanin Prevents Cisplatin-Induced Nephrotoxicity through Inhibition of Oxidative Stress. Food Funct. 2014, 5, 480–490. DOI: 10.1039/C3FO60501A.
  • Dawczynski, C.; Schubert, R.; Jahreis, G. Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chem. 2007, 103, 891–899. DOI: 10.1016/j.foodchem.2006.09.041.
  • Cian, R. E.; Fajardo, M. A.; Alaiz, M.; Vioque, J.; González, R. J.; Drago, S. R. Chemical Composition, Nutritional and Antioxidant Properties of the Red Edible Seaweed Porphyra columbina. Int. J. Food Sci. Nutr. 2014, 65, 299–305. DOI: 10.3109/09637486.2013.854746.
  • Wells, M. L.; Potin, P.; Craigie, J. S.; Raven, J. A.; Merchant, S. S.; Helliwell, K. E.; Smith, A. G.; Camire, M. E.; Brawley, S. H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. DOI: 10.1007/s10811-016-0974-5.
  • Zhao, Y.; Jiang, Y.; Zheng, B.; Zhuang, W.; Zheng, Y.; Tian, Y. Influence of Microwave Vacuum Drying on Glass Transition Temperature, Gelatinization Temperature, Physical and Chemical Qualities of Lotus Seeds. Food Chem. 2017, 228, 167–176. DOI: 10.1016/j.foodchem.2017.01.141.
  • Kumar, V.; Kaladharan1, P. Amino Acids in the Seaweeds as an Alternate Source of Protein for Animal Feed. Source of Protein for Animal Feed. J. Mar. Biol. Ass. India 2007, 49, 35–40.
  • Ranieri, A.; Benelli, G.; Castagna, A.; Sgherri, C.; Signorini, F.; Bientinesi, M.; Nicolella, C.; Canale, A. Freeze-Drying Duration Influences the Amino Acid and Rutin Content in Honeybee-Collected Chestnut Pollen. Saudi J. Biol. Sci. 2019, 26, 252–255. DOI: 10.1016/j.sjbs.2017.08.011.
  • FAO/WHO/UNU. Protein and amino acid requirements in human nutrition. Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Technical Report Series 935. WHO: Geneva, 2007.
  • Schmid, M.; Guihéneuf, F.; Stengel, D. B. Fatty Acid Contents and Profiles of 16 Macroalgae Collected from the Irish Coast at Two Seasons. J. Appl. Phycol. 2014, 26, 451–463. DOI: 10.1007/s10811-013-0132-2.
  • Tello-Ireland, C.; Lemus-Mondaca, R.; Vega-Gálvez, A.; López, J.; Di Scala, K. Influence of Hot-Air Temperature on Drying Kinetics, Functional Properties, Colour, Phycobiliproteins, Antioxidant Capacity, Texture and Agar Yield of Alga Gracilaria chilensis. LWT–Food Sci. Technol. 2011, 44, 2112–2118. DOI: 10.1016/j.lwt.2011.06.008.
  • Oh, S.; Shin, M.; Lee, K.; Choe, E. Effects of Water Activity on Pigments in Dried Laver (Porphyra) during Storage. Food Sci. Biotechnol. 2013, 22, 1523–1529. DOI: 10.1007/s10068-013-0247-x.
  • Khairy, H. M.; El-Sheikh, M. A. Antioxidant Activity and Mineral Composition of Three Mediterranean Common Seaweeds from Abu-Qir Bay, Egypt. Saudi J. Biol. Sci. 2015, 22, 623–630. DOI: 10.1016/j.sjbs.2015.01.010.
  • Prior, R. L. Oxygen Radical Absorbance Capacity (ORAC): New Horizons in Relating Dietary Antioxidants/Bioactives and Health Benefits. J. Funct. Foods 2015, 18, 797–810. DOI: 10.1016/j.jff.2014.12.018.
  • Udomkun, P.; Nagle, M.; Argyropoulos, D.; Mahayothee, B.; Latif, S.; Muller, J. Compositional and Functional Dynamics of Dried Papaya as Affected by Storage Time and Packaging Material. Food Chem. 2016, 196, 712–719. DOI: 10.1016/j.foodchem.2015.09.103.
  • Águila-Ramírez, R. N.; Arenas-González, A.; Hernández-Guerrero, C. J.; González-Acosta, B.; Borges-Souza, J. M.; Veron, B.; Pope, J.; Hellio, C. Antimicrobial and Antifouling Activities Achieved by Extracts of Seaweeds from Gulf of California, Mexico. Hidrobiologica 2012, 22, 8–15.
  • Jaswir, I.; Tope, A.-H. T.; Raus, R. A.; Monsur, H. A.; Ramli, N. Study on anti-Bacterial Potentials of Some Malaysian Brown Seaweeds. Food Hydrocoll. 2014, 42, 275–279. DOI: 10.1016/j.foodhyd.2014.03.008.
  • Muñoz-Ochoa, M.; Murillo-Álvarez, J. I.; Zermeño-Cervantes, L. A.; Martínez-Díaz, S.; Rodríguez-Riosmena, R. Screening of Extracts of Algae from Baja California Sur, Mexico as Reversers of the Antibiotic Resistance of Some Pathogenic Bacteria, Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 739–747.
  • Pinteus, S.; Alves, C.; Monteiro, H.; Araújo, E.; Horta, A.; Pedrosa, R. Asparagopsis armata and Sphaerococcus coronopifolius as a Natural Source of Antimicrobial Compounds. World J. Microbiol. Biotechnol. 2015, 31, 445–451. DOI: 10.1007/s11274-015-1797-2.
  • González del Val, A.; Platas, G.; Basilio, A.; Cabello, A.; Gorrochategui, J.; Suay, I.; Vicente, F.; Portillo, E.; Jiménez del Río, M.; Reina, G. G.; Peláez, F. Screening of Antimicrobial Activities in Red, Green and Brow Macroalgae from Gran Canaria (Canary Islands, Spain), Int. Microbiol. 2001, 4, 35–40.
  • Ha, Y. M.; Choi, J. S.; Lee, B. B.; Moon, H. E.; Cho, K. K.; Choi, I. S. Inhibitory Effects of Seaweed Extracts on the Growth of the Vaginal Bacterium Gardnerella vaginalis. J. Environ. Biol. 2014, 35, 537–542.
  • Karthikeyan, K.; Shweta, K.; Jayanthi, G.; Prabhu, K.; Thirumaran, G. Antimicrobial and Antioxidant Potential of Selected Seaweeds from Kodinar. Southern Coast of Saurashtra, Gujarat, India. J. Appl. Pharm. Sci. 2015, 5, 35–40.
  • Mendes, M.; Pereira, R.; Sousa Pinto, I.; Carvalho, A. P.; Gomes, A. M. Antimicrobial Activity and Lipid Profile of Seaweed Extracts from the North Portuguese Coast. Int. Food Res. J. 2013, 20, 3337–3345.
  • Mhadhebi, L.; Chaiebb, K.; Bouraoui, A. Evaluation of Antimicrobial Activity of Organic Fractions of Six Marine Algae from Tunisian Mediterranean Coasts. Int. J. Pharm. Pharm. Sci. 2012, 4, 534–537.
  • Shanmughapriya, S.; Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G. S.; Natarajaseenivasan, K. Antimicrobial Activity of Seaweeds Extracts against Multiresistant Pathogens. Ann. Microbiol. 2008, 58, 535–541. DOI: 10.1007/BF03175554.
  • Pérez, M. J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs. 2016, 14, 1–38. DOI: 10.3390/md14030052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.