647
Views
35
CrossRef citations to date
0
Altmetric
Articles

Drying kinetics and quality of carrots subjected to microwave-assisted drying preceded by combined pulsed electric field and ultrasound treatment

&
Pages 176-188 | Received 30 May 2019, Accepted 05 Jun 2019, Published online: 19 Jul 2019

References

  • Beigi, M. Energy Efficiency and Moisture Diffusivity of Apple Slices during Convective Drying. Food Sci. Technol. 2016, 36, 145–150. DOI:10.1590/1678-457X.0068.
  • Pirasteh, G.; Saidur, R.; Rahman, S. M. A.; Rahim, N. A. A Review on Development of Solar Drying Applications. Renew. Sustain. Energy Rev. 2014, 31, 133–148. DOI:10.1016/j.rser.2013.11.052.
  • Wiktor, A.; Witrowa-Rajchert, D. Pulsed Electric Fields as Pretreatment for Subsequent Food Process Operations. In Handbook of Electroporation, 1st ed.; Miklavcic, D., Ed. Springer: Cham, 2017; Vol. 4, pp. 1–6.
  • Atuonwu, J. C.; Jin, X.; van Straten, G.; Deventer Antonius, H. C.; van.; van Boxtel, J. B. Reducing Energy Consumption in Food Drying: Opportunities in Desiccant Adsorption and Other Dehumidification Strategies. Procedia Food Sci. 2011, 1, 1799–1805. DOI:10.1016/j.profoo.2011.09.264.
  • Wang, J.; Law, C. L.; Nema, P. K.; Zhao, J. H.; Liu, Z. L.; Deng, L. Z.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138. DOI:10.1016/j.jfoodeng.2018.01.002.
  • Nowak, D.; Piechucka, P.; Witrowa-Rajchert, D.; Wiktor, A. Impact of Material Structure on the Course of Freezing and Freeze-Drying and on the Properties of Dried Substance, as Exemplified by Celery. J. Food Eng. 2016, 180, 22–28. DOI:10.1016/j.jfoodeng.2016.01.032.
  • Sagar, V. R.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J Food Sci Technol. 2010, 47, 15–26. DOI:10.1007/s13197-010-0010-8.
  • Li, Z. Y.; Wang, R. F.; Kudra, T. Uniformity Issue in Microwave Drying. Dry. Technol. 2011, 29, 652–660.
  • Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of Drying Conditions on the Quality of Vacuum-Microwave Dried Potato Cubes. J. Food Eng. 2007, 81, 306–312. DOI:10.1016/j.jfoodeng.2006.10.028.
  • Witrowa-Rajchert, D.; Wiktor, A.; Sledz, M.; Nowacka, M. Selected Emerging Technologies to Enhance the Drying Process: A Review. Dry. Technol. 2014, 32, 1386–1396. DOI:10.1080/07373937.2014.903412.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. DOI:10.1016/j.foodres.2015.09.015.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A. S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI:10.1016/j.ultsonch.2016.06.035.
  • Miano, A. C.; Ibarz, A.; Augusto, P. E. D. Mechanisms for Improving Mass Transfer in Food with Ultrasound Technology: Describing the Phenomena in Two Model Cases. Ultrason. Sonochem. 2016, 29, 413–419. DOI:10.1016/j.ultsonch.2015.10.020.
  • Christman, C. L.; Carmichael, A. J.; Mossoba, M. M.; Riesz, P. Evidence for Free Radicals Produced in Aqueous Solutions by Diagnostic Ultrasound. Ultrasonics. 1987, 25, 31–34. DOI:10.1016/0041-624X(87)90008-4.
  • Gabriel, B.; Teissie, J. Generation of Reactive‐Oxygen Species Induced by Electropermeabilization of Chinese Hamster Ovary Cells and Their Consequence on Cell Viability. Eur. J. Biochem. 1994, 223, 25–33. DOI:10.1111/j.1432-1033.1994.tb18962.x.
  • Alam, M. R.; Lyng, J. G.; Frontuto, D.; Marra, F.; Cinquanta, L. Effect of Pulsed Electric Field Pretreatment on Drying Kinetics, Color, and Texture of Parsnip and Carrot. J. Food Sci. 2018, 83, 2159–2166. DOI:10.1111/1750-3841.14216.
  • Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots—Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018, 48, 249–258. DOI:10.1016/j.ultsonch.2018.05.040.
  • Wiktor, A.; Gondek, E.; Jakubczyk, E.; Dadan, M.; Nowacka, M.; Rybak, K.; Witrowa-Rajchert, D. Acoustic and Mechanical Properties of Carrot Tissue Treated by Pulsed Electric Field, Ultrasound and Combination of Both. J. Food Eng. 2018, 238, 12–21. DOI:10.1016/j.jfoodeng.2018.06.001.
  • Medina-Meza, I. G.; Boioli, P.; Barbosa-Cánovas, G. V. Assessment of the Effects of Ultrasonics and Pulsed Electric Fields on Nutritional and Rheological Properties of Raspberry and Blueberry Purees. Food Bioprocess Technol. 2016, 9, 520–531. DOI:10.1007/s11947-015-1642-5.
  • Zhang, Q.; Barbosa-Cánovas, G. V.; Swanson, B. G. Engineering Aspects of Pulsed Electric Field Pasteurization. J. Food Eng. 1995, 25, 261–281. DOI:10.1016/0260-8774(94)00030-D.
  • Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The Effect of Pulsed Electric Field on Drying Kinetics, Color, and Microstructure of Carrot. Dry. Technol. 2016, 34, 1286–1296. DOI:10.1080/07373937.2015.1105813.
  • Witrowa-Rajchert, D.; Lewicki, P. P. Rehydration Properties of Dried Plant Tissues. Int. J. Food Sci. Tech. 2006, 41, 1040–1046. DOI:10.1111/j.1365-2621.2006.01164.x.
  • Wiktor, A.; Sledz, M.; Nowacka, M.; Rybak, K.; Chudoba, T.; Lojkowski, W.; Witrowa-Rajchert, D. The Impact of Pulsed Electric Field Treatment on Selected Bioactive Compound Content and Color of Plant Tissue. Innov. Food Sci. Emerg. Technol. 2015, 30, 69–78. DOI:10.1016/j.ifset.2015.04.004.
  • Nowacka, M.; Wedzik, M. Effect of Ultrasound Treatment on Microstructure, Colour and Carotenoid Content in Fresh and Dried Carrot Tissue. Appl. Acoust. 2016, 103, 163–171. DOI:10.1016/j.apacoust.2015.06.011.
  • Pieczywek, P. M.; Kozioł, A.; Konopacka, D.; Cybulska, J.; Zdunek, A. Changes in Cell Wall Stiffness and Microstructure in Ultrasonically Treated Apple. J. Food Eng. 2017, 197, 1–8. DOI:10.1016/j.jfoodeng.2016.10.028.
  • Rodríguez, R.; Lombraña, J. I. Moisture Diffusivity Analysis in a Microwave Drying Process under Different Operating Conditions. Dry. Technol. 2007, 25, 1875–1883. DOI:10.1080/07373930701677942.
  • Adedeji, A. A.; Gachovska, T. K.; Ngadi, M. O.; Raghavan, G. S. V. Effect of Pretreatments on Drying Characteristics of Okra. Dry. Technol. 2008, 26, 1251–1256. DOI:10.1080/07373930802307209.
  • Telfser, A.; Gómez Galindo, F. Effect of Reversible Permeabilization in Combination with Different Drying Methods on the Structure and Sensorial Quality of Dried Basil (Ocimum Basilicum L.) Leaves. LWT-Fod Sci. Technol. 2019, 99, 148–155. DOI:10.1016/j.lwt.2018.09.062.
  • Shynkaryk, M. V.; Lebovka, N. I.; Vorobiev, E. Pulsed Electric Fields and Temperature Effects on Drying and Rehydration of Red Beetroots. Dry. Technol. 2008, 26, 695–704. DOI:10.1080/07373930802046260.
  • Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Effects of Pulsed Electric Fields Treatment on Vacuum Drying of Potato Tissue. LWT-Fod Sci. Technol. 2018, 95, 289–294. DOI:10.1016/j.lwt.2018.04.090.
  • Ricce, C.; Rojas, M. L.; Miano, A. C.; Siche, R.; Augusto, P. E. D. Ultrasound Pre-Treatment Enhances the Carrot Drying and Rehydration. Food Res. Int. 2016, 89, 701–708. DOI:10.1016/j.foodres.2016.09.030.
  • Nowacka, M.; Wiktor, A.; Śledź, M.; Jurek, N.; Witrowa-Rajchert, D. Drying of Ultrasound Pretreated Apple and Its Selected Physical Properties. J. Food Eng. 2012, 113, 427–433. DOI:10.1016/j.jfoodeng.2012.06.013.
  • Zielinska, M.; Markowski, M. The Influence of Microwave-Assisted Drying Techniques on the Rehydration Behavior of Blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 196, 1188–1196. DOI:10.1016/j.foodchem.2015.10.054.
  • Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of Hybrid (Microwave-Convectional) and Convectional Drying on Drying Kinetics, Total Phenolics, Antioxidant Capacity, Vitamin C, Color and Rehydration Capacity of Sour Cherries. Food Chem. 2017, 230, 295–305. DOI:10.1016/j.foodchem.2017.03.046.
  • Miano, A. C.; Rojas, M. L.; Augusto, P. E. D. Structural Changes Caused by Ultrasound Pretreatment: Direct and Indirect Demonstration in Potato Cylinders. Ultrason. Sonochem. 2019, 52, 176–183.
  • Dellarosa, N.; Laghi, L.; Ragni, L.; Dalla Rosa, M.; Galante, A.; Ranieri, B.; Florio, T. M.; Alecci, M. Pulsed Electric Fields Processing of apple tissue: Spatial Distribution of Electroporation by Means of Magnetic Resonance Imaging and Computer Vision System. Innov. Food Sci. Emerg. Technol. 2018, 47, 120–126. DOI:10.1016/j.ifset.2018.02.010.
  • Yanagida, H. The Effect of Dissolve Gas Concentration in the Initial Growth Stage of Multi Cavitation Bubbles. Differences between Vacuum Degassing and Ultrasound Degassing. Ultrason. Sonochem. 2008, 15, 492–496. DOI:10.1016/j.ultsonch.2007.06.008.
  • Wang, W.; Chen, W.; Zou, M.; Lv, R.; Wang, D.; Hou, F.; Feng, H.; Ma, X.; Zhong, J.; Ding, T.; et al. Applications of Power Ultrasound in Oriented Modification and Degradation of Pectin: A Review. J. Food Eng. 2018, 234, 98–107. DOI:10.1016/j.jfoodeng.2018.04.016.
  • Giteru, S. G.; Oey, I.; Ali, M. A. Feasibility of Using Pulsed Electric Fields to Modify Biomacromolecules: A Review. Trends Food Sci. Technol. 2018, 72, 91–113. DOI:10.1016/j.tifs.2017.12.009.
  • Ciurzyńska, A.; Jasiorowska, A.; Ostrowska-Ligęza, E.; Lenart, A. The Influence of the Structure on the Sorption Properties and Phase Transition Temperatures of Freeze-Dried Gels. J. Food Eng. 2019, 252, 18–27. DOI:10.1016/j.jfoodeng.2019.02.008.
  • Schössler, K.; Thomas, T.; Knorr, D. Modification of Cell Structure and Mass Transfer in Potato Tissue by Contact Ultrasound. Food Res. Int. 2012, 49, 425–431. DOI:10.1016/j.foodres.2012.07.027.
  • Khalloufi, S. Water Activity of Freeze Dried Mushrooms and Berries. Can. Biosyst. Eng./Le Genie Des Biosyst. Canada 2000, 42, 51–56.
  • Dellarosa, N.; Frontuto, D.; Laghi, L.; Dalla Rosa, M.; Lyng, J. G. The Impact of Pulsed Electric Fields and Ultrasound on Water Distribution and Loss in Mushrooms Stalks. Food Chem. 2017, 236, 94–100. DOI:10.1016/j.foodchem.2017.01.105.
  • Fratianni, A.; Albanese, D.; Mignogna, R.; Cinquanta, L.; Panfili, G.; Di Matteo, M. Degradation of Carotenoids in Apricot (Prunus armeniaca L.) during Drying Process. Plant Foods Hum. Nutr. 2013, 68, 241–246. DOI:10.1007/s11130-013-0369-6.
  • Song, J.; Wang, X.; Li, D.; Liu, C. Degradation Kinetics of Carotenoids and Visual Colour in Pumpkin (Cucurbita maxima L.) Slices during Microwave-Vacuum Drying. Int. J. Food Prop. 2017, 20, S632–S643. DOI:10.1080/10942912.2017.1306553.
  • Saini, R. K.; Nile, S. H.; Park, S. W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities. Food Res. Int. 2015, 76, 735–750. DOI:10.1016/j.foodres.2015.07.047.
  • Lavelli, V.; Zanoni, B.; Zaniboni, A. Effect of Water Activity on Carotenoid Degradation in Dehydrated Carrots. Food Chem. 2007, 104, 1705–1711. DOI:10.1016/j.foodchem.2007.03.033.
  • Konopacka, D.; Cybulska, J.; Zdunek, A.; Dyki, B.; Machlańska, A.; Celejewska, K. The Combined Effect of Ultrasound and Enzymatic Treatment on the Nanostructure, Carotenoid Retention and Sensory Properties of Ready-to-Eat Carrot Chips. LWT – Food Sci. Technol. 2017, 85, 427–433. DOI:10.1016/j.lwt.2016.11.085.
  • Rawson, A.; Tiwari, B. K.; Tuohy, M. G.; O’Donnell, C. P.; Brunton, N. Effect of Ultrasound and Blanching Pretreatments on Polyacetylene and Carotenoid Content of Hot Air and Freeze Dried Carrot Discs. Ultrason. Sonochem. 2011, 18, 1172–1179. DOI:10.1016/j.ultsonch.2011.03.009.
  • Fernández-Vázquez, R.; Stinco, C. M.; Hernanz, D.; Heredia, F. J.; Vicario, I. M. Colour Training and Colour Differences Thresholds in Orange Juice. Food Qual. Prefer. 2013, 30, 320–327. DOI:10.1016/j.foodqual.2013.05.018.
  • Zielinska, M.; Markowski, M. Color Characteristics of Carrots: Effect of Drying and Rehydration. Int. J. Food Prop. 2012, 15, 450–466. DOI:10.1080/10942912.2010.489209.
  • Leong, S. Y.; Richter, L. K.; Knorr, D.; Oey, I. Feasibility of Using Pulsed Electric Field Processing to Inactivate Enzymes and Reduce the Cutting Force of Carrot (Daucus carota Var. Nantes). Innov. Food Sci. Emerg. Technol. 2014, 26, 159–167. DOI:10.1016/j.ifset.2014.04.004.
  • Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The Inactivation Kinetics of Polyphenol Oxidase and Peroxidase in Bayberry Juice during Thermal and Ultrasound Treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. DOI:10.1016/j.ifset.2017.09.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.