Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 11
143
Views
4
CrossRef citations to date
0
Altmetric
Articles

The orthotropic viscoelastic properties of Chinese fir wood during the temperature ramping process

, &
Pages 1411-1420 | Received 28 Jan 2019, Accepted 08 Jul 2019, Published online: 22 Jul 2019

References

  • Lenth, C.; Sargent, R. Wood Material Behavior during Drying: Moisture-Dependent Tensile Stiffness and Strength of Radiata Pine at 70–150 °C. Drying Technol. 2008, 26, 1112–1117. DOI: 10.1080/07373930802266082.
  • Zhao, Y. K.; Iida, I.; Feng, S. H.; Lu, J. X. Viscoelastic Properties of Wood from Chinese-Fir and Poplar Plantations. For. Stud. China 2012, 14, 107–111. DOI: 10.1007/s11632-012-0201-7.
  • Langrish, T. A. G. Comparing Continuous and Cyclic Drying Schedules for Processing Hardwood Timber: The Importance of Mechanosorptive Strain. Drying Technol. 2013, 31, 1091–1098. DOI: 10.1080/07373937.2013.769449.
  • Zhan, T. Y.; Jiang, J. L.; Lu, J. X. The Viscoelastic Properties of Chinese Fir during Water-Loss Process under Hydrothermal Conditions. Drying Technol. 2015, 33, 1739–1745. DOI: 10.1080/07373937.2015.1029586.
  • Baranski, J. Moisture Content during and after High and Normal Temperature Drying Processes of Wood. Drying Technol. 2018, 36, 751–761. DOI: 10.1080/07373937.2017.1355319.
  • Engelund, E. T.; Salmén, L. Tensile Creep and Recovery of Norway Spruce Influenced by Temperature and Moisture. Holzforschung 2012, 66, 959–965. DOI: 10.1515/hf-2011-0172.
  • Tukiainen, P.; Hughes, M. The Effect of Temperature and Moisture Content on the Fracture Behaviour of Spruce and Birch. Holzforschung 2016, 70, 369–376. DOI: 10.1515/hf-2015-0017.
  • Zhan, T. Y.; Jiang, J. L.; Lu, J. X.; Zhang, Y. L.; Chang, J. M. Influence of Hygrothermal Condition on Dynamic Viscoelasticity of Chinese Fir (Cunninghamia Lanceolata). Part 1: Moisture Adsorption. Holzforschung 2018, 72, 567–578. DOI: 10.1515/hf-2017-0129.
  • Zhan, T. Y.; Jiang, J. L.; Lu, J. X.; Zhang, Y. L.; Chang, J. M. Influence of Hygrothermal Condition on Dynamic Viscoelasticity of Chinese Fir (Cunninghamia Lanceolata). Part 2: moisture Desorption. Holzforschung 2018, 72, 579–588. DOI: 10.1515/hf-2017-0130.
  • Jiang, J. L.; Lu, J. X.; Huang, R. F.; Li, X. L. Effects of Time and Temperature on the Viscoelastic Properties of Chinese Fir Wood. Drying Technol. 2009, 27, 1229–1234. DOI: 10.1080/07373930903266726.
  • Furuta, Y.; Okuyama, T.; Kojiro, K.; Miyoshi, Y.; Kiryu, T. Temperature Dependence of the Dynamic Viscoelasticity of Bases of Japanese Cypress Branches and the Trunk Close to the Branches Saturated with Water. J. Wood Sci. 2014, 60, 249–254. DOI: 10.1007/s10086-014-1402-6.
  • Jiang, J. L.; Lu, J. X.; Zhao, Y. K.; Wu, Y. Z. Influence of Frequency on Wood Viscoelasticity under Two Types of Heating Conditions. Drying Technol. 2010, 28, 823–829. DOI: 10.1080/07373937.2010.485084.
  • Hernández, R. E.; Passarini, L.; Koubaa, A. Effects of Temperature and Moisture Content on Selected Wood Mechanical Properties Involved in the Chipping Process. Wood Sci. Technol. 2014, 48, 1281–1301. DOI: 10.1007/s00226-014-0673-9.
  • Placet, V.; Passard, J.; Perré, P. Viscoelastic Properties of Wood across the Grain Measured under Water-Saturated Conditions up to 135 °C: Evidence of Thermal Degradation. J. Mater. Sci. 2008, 43, 3210–3217. DOI: 10.1007/s10853-008-2546-9.
  • Yildiz, U. C.; Yildiz, S.; Gezer, E. D. Mechanical and Chemical Behavior of Beech Wood Modified by Heat. Wood Fiber Sci. 2005, 37, 456–461. DOI: 10.1177/0040517505053955.
  • Kaygin, B.; Gunduz, G.; Aydemir, D. Some Physical Properties of Heat-Treated Paulownia (Paulownia Elongata) Wood. Drying Technol. 2009, 27, 89–93. DOI: 10.1080/07373930802565921.
  • Korkut, S.; Budakçı, M. Effect of High-Temperature Treatment on the Mechanical Properties of Rowan (Sorbus Aucuparia L.) Wood. Drying Technol. 2009, 27, 1240–1247. DOI: 10.1080/07373930903267161.
  • Alén, R.; Kotilainen, R.; Zaman, A. Thermochemical Behavior of Norway Spruce (Picea Abies) at 180-225 °C. Wood Sci. Technol. 2002, 36, 163–171. DOI: 10.1007/s00226-001-0133-1.
  • Guo, J.; Song, K. L.; Salmén, L.; Yin, Y. F. Changes of Wood Cell Walls in Response to Hygro-Mechanical Steam Treatment. Carbohyd. Polym. 2015, 115, 207–214. DOI: 10.1016/j.carbpol.2014.08.040.
  • Obataya, E.; Norimoto, M.; Gril, J. The Effects of Adsorbed Water on Dynamic Mechanical Properties of Wood. Polymer 1998, 39, 3059–3064. DOI: 10.1016/S0032-3861(97)10040-4.
  • Ozyhar, T.; Hering, S.; Niemz, P. Moisture-Dependent Elastic and Strength Anisotropy of European Beech Wood in Tension. J. Mater. Sci. 2012, 47, 6141–6150. DOI: 10.1007/s10853-012-6534-8.
  • Jiang, J. L.; Bachtiar, E. V.; Lu, J. X.; Niemz, P. Moisture-Dependent Orthotropic Elasticity and Strength Properties of Chinese Fir Wood. Eur. J. Wood Prod. 2017, 75, 927–938. DOI: 10.1007/s00107-017-1166-y.
  • Li, Z.; Jiang, J. L.; Lu, J. X. Moisture-Dependent Orthotropic Viscoelastic Properties of Chinese Fir Wood in Low Temperature Environment. J. Wood Sci. 2018, 64, 515–525. DOI: 10.1007/s10086-018-1738-4.
  • Bag, R.; Beaugrand, J.; Dole, P.; Kurek, B. Viscoelastic Properties of Woody Hemp Core. Holzforschung 2011, 65, 239–247. DOI: 10.1515/hf.2010.111.
  • Cao, J. Z.; Zhao, G. J. Dielectric Relaxation Based on Adsorbed Water in Wood Cell Wall under Non-Equilibrium State 2. Holzforschung 2001, 55, 87–92.
  • Passarini, L.; Malveau, C.; Hernandez, R. E. Water State Study of Wood Structure of Four Hardwoods below Fiber Saturation Point with Nuclear Magnetic Resonance. Wood Fiber Sci. 2014, 46, 480–488.
  • Placet, V.; Passard, J.; Perré, P. Viscoelastic Properties of Green Wood across the Grain Measured by Harmonic Tests in the Range 0-95 °C: Hardwood vs. softwood and Normal Wood vs. reaction Wood. Holzforschung 2007, 61, 548–557. DOI: 10.1515/HF.2007.093.
  • Placet, V.; Cisse, O.; Boubakar, M. L. Influence of Environmental Relative Humidity on the Tensile and Rotational Behaviour of Hemp Fibres. J. Mater. Sci. 2012, 47, 3435–3446. DOI: 10.1007/s10853-011-6191-3.
  • Zhan, T. Y.; Jiang, J. L.; Lu, J. X.; Zhang, Y. L.; Chang, J. M. Frequency-Dependent Viscoelastic Properties of Chinese Fir (Cunninghamia Lanceolata) under Hygrothermal Conditions. Part 2 Moisture Desorption. Holzforschung. 2019. DOI: 10.1515/hf-2018-0209.
  • Salmén, L.; Burgert, I. Cell wall features with Regard to Mechanical Performance. A Review. Holzforschung 2009, 63, 121–129. DOI: 10.1515/HF.2009.013.
  • Peng, H.; Jiang, J. L.; Lu, J. X.; Cao, J. Z. Orthotropic Mechano-Sorptive Creep Behavior of Chinese Fir during the Moisture Adsorption Process Determined in Tensile Mode via Dynamic Mechanical Analysis (DMA). Holzforschung 2019, 73, 229–239. DOI: 10.1515/hf-2018-0067.
  • Hill, C. A. S.; Norton, A.; Newman, G. The Water Vapor Sorption Behavior of Natural Fibers. J. Appl. Polym. Sci. 2009, 112, 1524–1537. DOI: 10.1002/app.29725.
  • Bergander, A.; Salmén, L. Cell Wall Properties and Their Effects on the Mechanical Properties of Fibers. J. Mater. Sci 2002, 37, 151–156. DOI: 10.1023/A:1013115925679.
  • Gündüz, G.; Niemz, P.; Aydemir, D. Changes in Specific Gravity and Equilibrium Moisture Content in Heat-Treated Fir (Abies Nordmanniana Subsp. bornmülleriana Mattf.) Wood. Drying Technol 2008, 26, 1135–1139. DOI: 10.1080/07373930802266207.
  • Kojiro, K.; Furuta, Y.; Ishimaru, Y. Influence of Heating History on Dynamic Viscoelastic Properties and Dimensions of Dry Wood. J. Wood Sci. 2008, 54, 196–201. DOI: 10.1007/s10086-007-0942-4.
  • Hillis, W. E. High Temperature and Chemical Effects on Wood Stability. Part 1: General Considerations. Wood Sci. Technol. 1984, 18, 281–293. DOI: 10.1007/BF00353364.
  • Hillis, W. E.; Rozsa, A. N. High Temperature and Chemical Effects on Wood Stability. Part 2: The Effect of Heat on the Softening of Radiata Pine. Wood Sci. Technol. 1985, 19, 57–66. DOI: 10.1007/BF00354753.
  • Abasolo, W. P.; Yamamoto, H.; Yoshida, M.; Mitsui, K.; Okuyama, T. Influence of Heat and Loading Time on the Mechanical Properties of Calamus Merrillii Becc. Holzforschung 2002, 56, 639–647. DOI: 10.1515/HF.2002.097.
  • Sugiyama, M.; Obataya, E.; Norimoto, M. Viscoelastic Properties of the Matrix Substance of Chemically Treated Wood. J. Mater. Sci 1998, 33, 3505–3510. DOI: 10.1023/A:1004678506822.
  • Jiang, J. L.; Lu, J. X.; Yan, H. P. Dynamic Viscoelastic Properties of Wood Treated by Three Drying Methods Measured at High-Temperature Range. Wood Fiber Sci 2008, 40, 72–79. DOI: 10.3959/2008-5.1.
  • Kelley, S. S.; Rials, T. G.; Glasser, W. G. Relaxation Behavior of the Amorphous Components of Wood. J. Mater. Sci. 1987, 22, 617–624. DOI: 10.1007/BF01160778.
  • Miyoshi, Y.; Sakae, A.; Arimura, N.; Kojiro, K.; Furuta, Y. Temperature Dependences of the Dynamic Viscoelastic Properties of Wood and Acetylated Wood Swollen by Water or Organic Liquids. J. Wood Sci. 2018, 64, 157–163. DOI: 10.1007/s10086-017-1688-2.
  • Backman, A. C.; Lindberg, K. A. H. Differences in Wood Material Responses for Radial and Tangential Direction as Measured by Dynamic Mechanical Thermal Analysis. J. Mater. Sci. 2001, 36, 3777–3783. DOI: 10.1023/A:1017986119559.
  • Mark, R. E. Cell Wall Mechanics of Tracheids. Yale University Press: New Haven, 1967. DOI: 10.1086/ahr/90.2.416.
  • Cole, K. S.; Cole, R. H. Dispersion and Absorption in Dielectrics. I. Alternating Current Characteristics. J. Chem. Phys 1941, 9, 341–351. DOI: 10.1063/1.1750906.
  • Cole, K. S.; Cole, R. H. Dispersion and Absorption in Dielectrics. II. Direct Current Characteristics. J. Chem. Phys. 1942, 10, 98–105. DOI: 10.1063/1.1723677.
  • Perré, P.; Passard, J. A Physical and Mechanical Model Able to Predict the Stress Field in Wood over a Wide Range of Drying Conditions. Drying Technol. 2004, 22, 27–44. DOI: 10.1081/DRT-120028202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.