Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 11
487
Views
18
CrossRef citations to date
0
Altmetric
Articles

Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii

, , , &
Pages 1493-1504 | Received 28 Apr 2019, Accepted 21 Jul 2019, Published online: 01 Aug 2019

References

  • Çağlarırmak, N. The Nutrients of Exotic Mushrooms (Lentinula edodes and Pleurotus Species) and an Estimated Approach to the Volatile Compounds. Food Chem. 2007, 105, 1188–1194. DOI: 10.1016/j.foodchem.2007.02.021.
  • Kim, M.-Y.; Chung, ll-M.; Lee, S.-J.; Ahn, J.-K.; Kim, E.-H.; Kim, M.-J.; Kim, S.-L.; Moon, H.-I.; Ro, H.-M.; Kang, E.-Y.; et al. Comparison of Free Amino Acid, Carbohydrates Concentrations in Korean Edible and Medicinal Mushrooms. Food Chem. 2009, 113, 386–393. DOI: 10.1016/j.foodchem.2008.07.045.
  • Ma, G.; Yang, W. J.; Fang, Y.; Ma, N.; Pei, F.; Zhao, L. Y.; Hu, Q. H. Antioxidant and Cytotoxicites of Pleurotus eryngii Residue Polysaccharides Obtained by Ultrafiltration. LWT – Food Sci. Technol. 2016, 73, 108–116. DOI: 10.1016/j.lwt.2016.05.049.
  • Li, X. b.; Feng, T.; Zhou, F.; Zhou, S.; Liu, Y. F.; Li, W.; Ye, R.; Yang, Y. Effects of Drying Methods on the Tasty Compounds of Pleurotus eryngii. Food Chem. 2015, 166, 358–364. DOI: 10.1016/j.foodchem.2014.06.049.
  • Carrasco-González, J. A.; Serna-Saldívar, S. O.; Gutiérrez-Uribe, J. A. Nutritional Composition and Nutraceutical Properties of the Pleurotus Fruiting Bodies: Potential Use as Food Ingredient. J. Food Compos. Anal. 2017, 58, 69–81. DOI: 10.1016/j.jfca.2017.01.016.
  • Ren, D.; Wang, N.; Guo, J. J.; Yuan, L.; Yang, X. B. Chemical Characterization of Pleurotus eryngii Polysaccharide and Its Tumor-Inhibitory Effects against Human Hepatoblastoma HepG-2 Cells. Carbohyd. Polym. 2016, 138, 123–133. DOI: 10.1016/j.carbpol.2015.11.051.
  • Suja, G.; Sundaresan, S.; John, K. S.; Sreekumar, J.; Misra, R. S. Higher Yield, Profit and Soil Quality from Organic Farming of Elephant Foot Yam. Agron. Sustain. Dev. 2012, 32, 755–764. DOI: 10.1007/s13593-011-0058-5.
  • Dehghannya, J.; Farshad, P.; Heshmati, M. K. Three-Stage Hybrid Osmotic–Intermittent Microwave–Convective Drying of Apple at Low Temperature and Short Time. Dry. Technol. 2018, 36, 1982–2005. DOI: 10.1080/07373937.2018.1432642.
  • Chauhan, A. K. S.; Srivastava, A. K. Optimizing Drying Conditions for Vacuum-Assisted Microwave Drying of Green Peas (Pisum sativum L.). Dry. Technol. 2009, 27, 761–769. DOI: 10.1080/07373930902828120.
  • Maskan, M. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 177–182. DOI: 10.1016/S0260-8774(00)00155-2.
  • Kumar, C.; Karim, M. A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. DOI: 10.1080/10408398.2017.1373269.
  • Wang, R. F.; Li, Z. Y.; Li, Y. H.; Ye, J. S. Soybean Drying Characteristics in Microwave Rotary Dryer with Forced Convection. Front. Chem. Eng. China 2009, 3, 289–292. DOI: 10.1007/s11705-009-0022-y.
  • Lv, W. Q.; Han, Q. H.; Li, S. J.; Zhou, H. J.; Zhao, D. L.; Zhu, W. H. Analysis of Microwave Drying Model and Water Removing Mechanism of Ginger Slices. Trans. Chin. Soc. Agric. Mach. 2015, 46, 233–237. (in Chinese). DOI: 10.6041/j.issn.1000-1298.2015.04.034.
  • Wang, D. D.; Zhang, M.; Wang, Y. H.; Martynenko, A. Effect of Pulsed-Spouted Bed Microwave Freeze Drying on Quality of Apple Cuboids. Food Bioprocess Technol. 2018, 11, 1–12. DOI: 10.1007/s11947-018-2061-1.
  • Wray, D.; Ramaswamy, H. S. Novel Concepts in Microwave Drying of Foods. Dry. Technol. 2015, 33, 769–783. DOI: 10.1080/07373937.2014.985793.
  • Li, S. Q.; Shah, N. P. Characterization, Antioxidative and Bifidogenic Effects of Polysaccharides from Pleurotus eryngii after Heat Treatments. Food Chem. 2016, 197, 240–249. DOI: 10.1016/j.foodchem.2015.10.113.
  • Lu, Y.; Zhang, M.; Sun, J. C.; Cheng, X. F.; Adhikari, B. Drying of Burdock Root Cubes Using a Microwave-Assisted Pulsed Spouted Bed Dryer and Quality Evaluation of the Dried Cubes. Dry. Technol. 2014, 32, 1785–1790. DOI: 10.1080/07373937.2014.945180.
  • Lv, W. Q.; Li, S. J.; Han, Q. H.; Zhao, Y. B.; Wu, H. H. Study of the Drying Process of Ginger (Zingiber officinale Roscoe) Slices in Microwave Fluidized Bed Dryer. Dry. Technol. 2016, 34, 1690–1699. DOI: 10.1080/07373937.2015.1137932..
  • Hu, L.; Wang, G. H.; Wang, Q. D. Efficient Drying and Oxygen-Containing Functional Groups Characteristics of Lignite during Microwave Irradiation Process. Dry. Technol. 2018, 36, 1086–1097. DOI: 10.1080/07373937.2017.1378230.
  • Cao, X.; Zhang, M.; Qian, H.; Mujumdar, A. S. Drying Based on Temperature-Detection-Assisted Control in Microwave-Assisted Pulse-Spouted Vacuum Drying. J. Sci. Food Agric. 2017, 97, 2307–2315. DOI: 10.1002/jsfa.8040.
  • Liu, Z.; Zhang, M.; Wang, Y. Drying of Restructured Chips Made from the Old Stalks of Asparagus officinalis: Impact of Different Drying Methods. J. Sci. Food Agric. 2016, 96, 2815–2824. DOI: 10.1002/jsfa.7449.
  • Li, L. L.; Zhang, M.; Bhandari, B.; Zhou, L. LF-NMR Online Detection of Water Dynamics in Apple Cubes during Microwave Vacuum Drying. Dry. Technol. 2018, 36, 1–10. DOI: 10.1080/07373937.2018.1432643.
  • Garciasegovia, P.; Andrésbello, A.; Martinezmonzo, J. Rehydration of Air-Dried Shiitake Mushroom (Lentinus edodes) Caps: Comparison of Conventional and Vacuum Water Immersion Processes. LWT – Food Sci. Technol. 2011, 44, 480–488. DOI: 10.1016/j.lwt.2010.08.010.
  • Lv, W. Q.; Zhang, M.; Bhandari, B.; Li, L. L.; Wang, Y. C. Smart NMR Method of Measurement of Moisture Content of Vegetables during Microwave Vacuum Drying. Food Bioprocess Technol. 2017, 10, 2251–2260. DOI: 10.1007/s11947-017-1991-3.
  • Li, H.; Lin, B.; Hong, Y. D.; Liu, T.; Huang, Z. B.; Wang, R.; Wang, Z. Assessing the Moisture Migration during Microwave Drying of Coal Using Low-Field Nuclear Magnetic Resonance. Dry. Technol. 2017, 36, 1–11. DOI: 10.1080/07373937.2017.1349136.
  • Thybo, A. K.; Andersen, H. J.; Karlsson, A. H.; Dønstrup, S.; Stødkilde-Jørgensen, H. Low-Field NMR Relaxation and NMR-Imaging as Tools in Differentiation between Potato Sample and Determination of Dry Matter Content in Potatoes. LWT – Food Sci. Technol. 2003, 36, 315–322. DOI: 10.1016/S0023-6438(02)00210-4.
  • Jangam, S. V. An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Dry. Technol. 2011, 29, 1343–1357. DOI: 10.1080/07373937.2011.594378.
  • Mousa, N.; Farid, M. Microwave Vacuum Drying of Banana Slices. Dry. Technol. 2002, 20, 2055–2066. DOI: 10.1081/DRT-120015584.
  • Wang, Y. C.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J.; Roknul Azam, S. M. Study of Drying Uniformity in pulsed spouted microwave–Vacuum Drying of Stem Lettuce Slices with Regard to Product Quality. Dry. Technol. 2013, 31, 91–101. DOI: 10.1080/07373937.2012.721431.
  • Geedipalli, S. S. R.; Rakesh, V.; Datta, A. K. Modeling the Heating Uniformity Contributed by a Rotating Turntable in Microwave Ovens. J. Food Eng. 2007, 82, 359–368. DOI: 10.1016/j.jfoodeng.2007.02.050.
  • Hansen, C. L.; Thybo, A. K.; Bertram, H. C.; Viereck, N.; Van Den Berg, F.; Engelsen, S. B. Determination of Dry Matter Content in Potato Tubers by Low-Field Nuclear Magnetic Resonance (LF-NMR). J. Agric. Food Chem. 2010, 58, 10300–10304. DOI: 10.1021/jf101319q.
  • Li, M. Y.; Wang, H. B.; Zhao, G. M.; Qiao, M. W.; Li, M.; Sun, L. X.; Gao, X. P.; Zhang, J. W. Determining the Drying Degree and Quality of Chicken Jerky by LF-NMR. J. Food Eng. 2014, 139, 43–49. DOI: 10.1016/j.jfoodeng.2014.04.015.
  • Xiao, Q.; Lim, L. T.; Zhou, Y.; Zhao, Z. Drying Process of Pullulan Edible Films Forming Solutions Studied by Low-Field NMR. Food Chem. 2017, 230, 611–617. DOI: 10.1016/j.foodchem.2017.03.097.
  • Chitrakar, B.; Zhang, M.; Bhandari, B. Novel Intelligent Detection of Safer Water Activity by LF-NMR Spectra for Selected Fruits and Vegetables during Drying. Food Bioprocess Technol. 2019, 12, 1093–1101. DOI: 10.1007/s11947-019-02278-y.
  • Zhao, Y. T.; Zheng, Y. M.; Li, Z. Y.; Jiang, Y. J.; Zhuang, W. J.; Zheng, B. D.; Tian, Y. T. Effects of Ultrasonic Pretreatments on Thermodynamic Propertyes, Water State, Color Kinetics, and Free Amino Acid Composition in Microwave Vacuum Dried Lotus Seeds. Dry. Technol. 2019, 1–11. DOI: 10.1080/07373937.2019.1587618.
  • Song, Y. K.; Zang, X.; Kamal, T.; Bi, J.; Cong, S.; Zhu, B. W.; Tan, M. Q. Real-Time Detection of Water Dynamics in Abalone (Haliotis discus Hannai Ino) During Drying and Rehydration Processes Assessed by LF-NMR and MRI. Dry. Technol. 2018, 36, 72–83. DOI: 10.1080/07373937.2017.1300807.
  • Kirtil, E.; Dag, D.; Guner, S.; Unal, K.; Oztop, M. H. Dynamics of Unloaded and Green Tea Extract Loaded Lecithin Based Liposomal Dispersions Investigated by Nuclear Magnetic Resonance T2 Relaxation. Food Res. Int. 2017, 99, 807–814. DOI: 10.1016/j.foodres.2017.06.064.
  • Sun, Q.; Zhang, M.; Mujumdar, A. S.; Yang, P. Q. Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying. Food Bioprocess Technol. 2019, 12, 551–562. DOI: 10.1007/s11947-018-2231-1.
  • Santhalakshmy, S.; Bosco, S. J. D.; Francis, S.; Sabeena, M. Effect of Inlet Temperature on Physicochemical Properties of Spray-Dried Jamun Fruit Juice Powder. Powder Technol. 2015, 274, 37–43. DOI: 10.1016/j.powtec.2015.01.016.
  • Lin, S. Y.; Yang, S. L.; Li, X. F.; Chen, F.; Zhang, M. D. Dynamics of Water Mobility and Distribution in Soybean Antioxidant Peptide Powders Monitored by LF-NMR. Food Chem. 2016, 199, 280–286. DOI: 10.1016/j.foodchem.2015.12.024.
  • Mandala, V. S.; Gelenter, M. D.; Hong, M. Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Time Scales in an Archetypal Proton Channel: Insights from Solid-State NMR. J. Am. Chem. Soc. 2018, 140, 1514–1524. DOI: 10.1021/jacs.7b12464.
  • Cheng, S. S.; Zhang, T.; Li, Y.; Wang, X.; Song, Y. H.; Wang, H.; Wang, H. T.; Tan, M. Q. Use of Low-field-NMR and MRI to Characterize Water Mobility and Distribution in Pacific Oyster (Crassostrea gigas) during Drying Process. Dry. Technol. 2018, 36, 630–636. DOI: 10.1080/07373937.2017.1359839.
  • Zhang, X. K.; Zhu, S. S.; Huang, J. H.; Xu, G.; Xu, J. G.; Li, H. D. Analysis on Internal Moisture Changes of Carrot Slices during Drying Process Using Low-Field NMR. Trans. Chin. Soc. Agric. Mach. 2012, 28, 282–287. (in Chinese) DOI: 10.3969/j.issn.1002-6819.2012.22.039.
  • Lv, W. Q.; Zhang, M.; Wang, Y. C.; Adhikari, B. Online Measurement of Moisture Content, Moisture Distribution, and State of Water in Corn Kernels During Microwave Vacuum Drying Using Novel Smart NMR/MRI Detection System. Dry. Technol. 2018, 36, 1–11. DOI: 10.1080/07373937.2017.1418751.
  • Cheng, S. S.; Tang, Y. Q.; Zhang, T.; Song, Y. K.; Wang, X. H.; Wang, H. H.; Wang, H. T.; Tan, M. Q. An approach for Monitoring the Dynamic States of Water in Shrimp during Drying Process with LF-NMR and MRI. Dry. Technol. 2018, 36, 841–848. DOI: 10.1080/07373937.2017.1357569.
  • Xu, F. F.; Jin, X.; Zhang, L.; Chen, X. D. Investigation on Water Status and Distribution in Broccoli and the Effects of Drying on Water Status Using NMR and MRI Methods. Food Res. Int. 2017, 96, 191–197. DOI: 10.1016/j.foodres.2017.03.041.
  • Y. T., Zhao, Y. T, T.; Huang, J. J.; Zeng, H. L.; Zheng, B. D. Effects of Different Drying Methods on the Product Quality and Volatile Compounds of Whole Shiitake Mushrooms. Food Chem. 2016, 197, 714–722. DOI: 10.1016/j.foodres.2017.03.041.
  • Cuccurullo, G.; Giordano, L.; Metallo, A.; Cinquanta, L. Drying Rate Control in Microwave Assisted Processing of Sliced Apples. Biosyst. Eng. 2018, 170, 24–30. DOI: 10.1016/j.biosystemseng.2018.03.010.
  • Kroehnke, J.; Szadzińska, J.; Stasiak, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Musielak, G. Ultrasound-and Microwave-Assisted Convective Drying of carrots-Process Kinetics and Product's Quality Analysis. Ultrason. Sonochem. 2018, 48, 249–258. DOI: 10.1016/j.ultsonch.2018.05.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.