Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 12
710
Views
17
CrossRef citations to date
0
Altmetric
Reviews

A review on preparing new energy ultrafine powder materials by freeze-drying

, , , , &
Pages 1544-1564 | Received 02 May 2019, Accepted 31 Jul 2019, Published online: 12 Aug 2019

References

  • Zhang, L. Y.; Li, Y.; Zhang, J.; Luo, B.; He, J. M.; Deng, S. H. The Relationships among Energy Consumption, Economic Output and Energy Intensity of Countries at Different Stage of Development. Renew. Sustain. Energy. Rev. 2017, 74, 258–264.
  • Zhang, X.; Zhang, Z. H.; Zhou, Z. MXene-Based Materials for Electrochemical Energy Storage. J. Energy Chem. 2018, 27, 73–85.
  • Ju, H. X. Functional Nanomaterials and Nanoprobes for Amplified Biosensing. Appl. Mater. Today 2018, 10, 51–71. DOI: 10.1016/j.apmt.2017.11.001.
  • Rajabi, F.; Fayyaz, F.; Luque, R. Cytosine-Functionalized SBA-15 Mesoporous Nanomaterials Synthesis, Characterization and Catalytic Applications. Microporous Mesoporous Mater. 2017, 253, 64–70.
  • Macrì, D.; Barletta, D.; Lettieri, P.; Poletto, M. Experimental and Theoretical Analysis of TiO2 Powders Flow Properties at Ambient and High Temperatures. Chem. Eng. Sci. 2017, 167, 172–190. DOI: 10.1016/j.ces.2017.03.057.
  • Wang, J. P.; Du, C. Y.; Yan, C. Q.; He, X. S.; Song, B.; Yin, G. P.; Zuo, P. J.; Chen, X. Q. Al2O3 Coated Concentration-Gradient Li[Ni0.73Co0.12Mn0.15] O2 Cathode Material by Freeze Drying for Long-Life Lithium Ion Batteries. Electrochim. Acta 2015, 174, 1185–1191. DOI: 10.1016/j.electacta.2015.06.112.
  • Tian, X. H.; Zhou, Y. K.; Wu, G.; Wang, P. C.; Chen, J. Controllable Synthesis of Porous LiFePO4 for Tunable Electrochemical Li-Insertion Performance. Electrochim. Acta 2017, 229, 316–324. DOI: 10.1016/j.electacta.2017.01.093.
  • Yong, S. M.; Kim, D. S.; Jung, W. K.; Bharathi, K. K.; Kim, D. K. Freeze-Casted TiO2 Photoelectrodes with Hierarchical Porous Structures for Efficient Light Harvesting Ability in Dye-Sensitized Solar Cells. Appl. Surf. Sci. 2018, 449, 405–411. DOI: 10.1016/j.apsusc.2017.09.143.
  • Wang, L.; Duan, G. R.; Chen, S. M.; Liu, X. H. Hydrothermally Controlled Synthesis of α-MnO2, γ-MnOOH, and Mn3O4 Nanomaterials with Enhanced Electrochemical Properties. J. Alloy. Compd. 2018, 752, 123–132. DOI: 10.1016/j.jallcom.2018.03.244.
  • Schulz, C.; Dreier, T.; Fikri, M.; Wiggers, H. Gas-Phase Synthesis of Functional Nanomaterials: Challenges to Kinetics, Diagnostics, and Process Development. Proc. Combust. Inst. 2019, 37, 83–108. DOI: 10.1016/j.proci.2018.06.231.
  • Juliet Christina Mary, A.; Chandra Bose, A. Surfactant Assisted ZnCo2O4 Nanomaterial for Supercapacitor Application. Appl. Surf. Sci. 2018, 449, 105–112. DOI: 10.1016/j.apsusc.2018.01.117.
  • Wang, J.; Chen, R. S.; Xiang, L.; Komarneni, S. Synthesis, Properties and Applications of ZnO Nanomaterials with Oxygen Vacancies: A Review. Ceram. Int. 2018, 44, 7357–7377. DOI: 10.1016/j.ceramint.2018.02.013.
  • Bovone, G.; Kawale, S.; Bernini, C.; Siri, A. S.; Vignolo, M. Freeze Drying Technique to Prepare Doped Nanosized B Powder. Drying Technol. 2016, 34, 923–929. DOI: 10.1080/07373937.2015.1086783.
  • Biao, L. H.; Tan, S. N.; Zhang, X. W.; Gao, J.; Liu, Z. G.; Fu, Y. J. Synthesis and Characterization of Proanthocyanidins-Functionalized Ag Nanoparticles. Colloid Surf. B-Biointerf. 2018, 169, 438–443. DOI: 10.1016/j.colsurfb.2018.05.050.
  • Lin, X. B.; Wu, M.; Kuga, S.; Endo, T.; Huang, Y. Synthesis of Controllable Monodisperse Gold Nanoparticles Using Wood Material and Their Catalytic Activity for p-Nitrophenol Reduction. Polym. J. 2016, 48, 919–923. DOI: 10.1038/pj.2016.51.
  • Silva, E. R.; Curic, M.; Furtado, J. G.; Ferraz, H. C.; Secchi, A. R. The Effect of Calcination Atmosphere on Structural Properties of Y-Doped SrTiO3 Perovskite Anode for SOFC Prepared by Solid-State Reaction. Ceram. Int. 2019, 45, 9761–9770. DOI: 10.1016/j.ceramint.2019.02.011.
  • Rao, G. J.; Mazumder, R.; Bhattacharyya, S.; Chaudhuri, P. Synthesis, CO2 Absorption Property and Densification of Li4SiO4 Powder by Glycine-Nitrate Solution Combustion Method and Its Comparison with Solid State Method. J. Alloy Compd. 2017, 725, 461–471. DOI: 10.1016/j.jallcom.2017.07.163.
  • Li, Z.; Wu, K. Y.; Cao, J.; Wang, Y. F. Controlled Synthesis of α-Al2O3 via the Hydrothermal-Pyrolysis Method. IOP Conf. Ser: Mater. Sci. Eng. 2017, 207, 012004. DOI: 10.1088/1757-899X/207/1/012004.
  • Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A. Synthesis, Characterization, and Magnetic Properties of ZnO-ZnFe2O4 Nanoparticles with High Photocatalytic Activity. J. Magn. Magn. Mater. 2017, 441, 98–104. DOI: 10.1016/j.jmmm.2017.05.044.
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro- and Nanospheres/Particles Preparation: A Review. Drying Technol. 2016, 34, 1758–1772. DOI: 10.1080/07373937.2016.1232271.
  • Egbuchunam, T.; Balkose, D. Effect of Supercritical Ethanol Drying on the Properties of Zinc Oxide Nanoparticles. Drying Technol. 2012, 30, 739–749. DOI: 10.1080/07373937.2012.661380.
  • Ran, K.; Huang, W.; Shi, Q.; Tang, L.; Peng, B.; Liang, S.; Zhu, H.; Mao, Z. Freeze-Drying Induced Nanocrystallization of VO2 (M) with Improved Mid-Infrared Switching Properties. J. Alloys Compd. 2017, 728, 1076–1082. DOI: 10.1016/j.jallcom.2017.06.291.
  • Guo, D. U.; Zhao, Y. J.; Ling, C.; Li, J. B.; Jin, H. B. Vacuum Freeze-Drying Assisted Preparation of Spherical AlB2 Powders with Ultrafine Microstructure. Ceram. Int. 2018, 44, 6451–6455. DOI: 10.1016/j.ceramint.2018.01.040.
  • Lyubenova, T. S.; Matteucci, F.; Costa, A.; Dondi, M.; Carda, J. Ceramic Pigments with Sphene Structure Obtained by Both Spray- and Freeze-Drying Techniques. Powder Technol. 2009, 193, 1–5. DOI: 10.1016/j.powtec.2009.01.020.
  • Ciftci, D.; Ubeyitogullari, A.; Huerta, R. R.; Ciftci, O. N.; Flores, R. A.; Saldaña, M. D. A. Lupin Hull Cellulose Nanofiber Aerogel Preparation by Supercritical CO2 and Freeze Drying. J. Supercrit. Fluids. 2017, 127, 137–145. DOI: 10.1016/j.supflu.2017.04.002.
  • Liu, J. Study on Synthesis of Functionally Inorganic Ultrafine Powder by Vacuum Freeze-drying. PhD thesis, Northeastern University, Shengyang, 2006.
  • Guo, S. N.; Bai, Y.; Geng, Z. F.; Wu, F.; Wu, C. Facile Synthesis of Li3V2(PO4)3/C Cathode Material for Lithium-Ion Battery via Freeze-Drying. J. Energy Chem. 2019, 32, 159–165.
  • Wei, Z. S.; Jun, L.; Hai, X. C. Preparation of Silver Nanopowder by Freeze-Drying Procedure. Drying Technol. 2009, 27, 529–533. DOI: 10.1080/07373930802715278.
  • Hu, W. Q.; Yu, L. M.; Ma, Z. Q.; Liu, Y. C. W-Y2O3 Composite Nanopowders Prepared by Freeze-Drying Method and Its Sintering Characteristics. J. Alloys Compd. 2019, 806, 127–135.
  • Yan, R. Q.; Chen, Y.; Lin, Y.; Chen, F. L. Nanocrystals-Based Macroporous Materials Synthesized by Freeze-Drying Combustion. Electrochim. Acta 2016, 217, 187–194. DOI: 10.1016/j.electacta.2016.09.024.
  • Gong, H.; Tang, D.-Y.; Huang, H.; Ma, J. Agglomeration Control of Nd:YAG Nanoparticles via Freeze Drying for Transparent Nd:YAG Ceramics. J. Am. Ceram. Soc. 2009, 92, 812–817. DOI: 10.1111/j.1551-2916.2009.02987.x.
  • Huang, S.; Lu, Y.; Wang, T. Q.; Gu, C. D.; Wang, X. L.; Tu, J. P. Polyacrylamide-Assisted Freeze Drying Synthesis of Hierarchical Plate-Arrayed LiV3O8 for High-Rate Lithium-Ion Batteries. J. Power Sources. 2013, 235, 256–264. DOI: 10.1016/j.jpowsour.2013.02.031.
  • Xi, X. L.; Nie, Z. R.; Jiang, Y. B.; Xu, X. Y.; Zuo, T. Y. Preparation and Characterization of Ultrafine Cobalt Powders and Supported Cobalt Catalysts by Freeze-Drying. Powder Technol. 2009, 191, 107–110. DOI: 10.1016/j.powtec.2008.09.017.
  • Zhao, J. Z.; He, Y.; Zhang, L.; Lu, K. Preparation of Porous TiO2 Powder with Mesoporous Structure by Freeze-Drying Method. J. Alloy. Compd. 2016, 678, 36–41. DOI: 10.1016/j.jallcom.2016.03.253.
  • Xi, X. L.; Xu, X. Y.; Nie, Z. R.; He, S.; Wang, W.; Yi, J.; Zuo, T. Y. Preparation of W-Cu Nano-Composite Powder Using a Freeze-Drying Technique. Int. J. Refract. Met. Hard Mat. 2010, 28, 301–304. DOI: 10.1016/j.ijrmhm.2009.10.014.
  • Eggenhuisen, T. M.; Munnik, P.; Talsma, H.; de Jongh, P. E.; de Jong, K. P. Freeze-Drying for Controlled Nanoparticle Distribution in Co/SiO2 Fischer-Tropsch Catalysts. J. Catal. 2013, 297, 306–313. DOI: 10.1016/j.jcat.2012.10.024.
  • Xi, X. L.; Chen, G. L.; Nie, Z. R.; He, S.; Pi, X.; Zhu, X. G.; Zhu, J. J.; Zuo, T. Y. Preparation and Performance of LiFePO4 and LiFePO4/C Cathodes by Freeze-Drying. J. Alloy Compd. 2010, 497, 377–379. DOI: 10.1016/j.jallcom.2010.03.078.
  • Xi, X. L.; Nie, Z. R.; Ma, L. W.; Li, L.; Xu, X. Y.; Zuo, T. Y. Synthesis and Characterization of Ultrafine Co2AlO4 Pigment by Freeze-Drying. Powder Technol. 2012, 226, 114–116. DOI: 10.1016/j.powtec.2012.04.029.
  • Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-Drying of Nanoparticles: Formulation, Process and Storage Considerations. Adv. Drug. Deliv. Rev. 2006, 58, 1688–1713. DOI: 10.1016/j.addr.2006.09.017.
  • Wang, W.; Chen, M.; Chen, G. H. Issues in Freeze Drying of Aqueous Solutions. Chin. J. Chem. Eng. 2012, 20, 551–559. DOI: 10.1016/S1004-9541(11)60218-8.
  • Jing, Y. F.; Patakangas, J.; Lund, P. D.; Zhu, B. An Improved Synthesis Method of Ceria-Carbonate Based Composite Electrolytes for Low-Temperature SOFC Fuel Cells. Int. J. Hydrogen Energy. 2013, 38, 16532–16538. DOI: 10.1016/j.ijhydene.2013.05.136.
  • Azouni, M. A.; Casses, P.; Sergiani, B. Capture or Repulsion of Treated Nylon Particles by an Ice-Water Interface. Colloid Surf. A-Physicochem. Eng. Asp. 1997, 122, 199–205. DOI: 10.1016/S0927-7757(96)03747-8.
  • Azouni, M. A.; Kalita, W.; Yemmou, M. On the Particle Behaviour in Front of Advancing Liquid-Ice Interface. J. Cryst. Growth. 1990, 99, 201–205. DOI: 10.1016/0022-0248(90)90513-K.
  • Sitar, A.; Škrlec, K.; Voglar, J.; Avanzo, M.; Kočevar, K.; Cegnar, M.; Irman, Š.; Ravnik, J.; Hriberšek, M.; Golobič, I. Effects of Controlled Nucleation on Freeze-Drying Lactose and Mannitol Aqueous Solutions. Drying Technol. 2018, 36, 1263–1272. DOI: 10.1080/07373937.2017.1399903.
  • Morais, A. R. d V.; Alencar, É. d N.; Xavier Júnior, F. H.; de Oliveira, C. M.; Marcelino, H. R.; Barratt, G.; Fessi, H.; do Egito, E. S. T.; Elaissari, A. Freeze-Drying of Emulsified Systems: A Review. Int. J. Pharm. 2016, 503, 102–114. DOI: 10.1016/j.ijpharm.2016.02.047.
  • Rabinovitch, Y.; Bogicevic, C.; Karolak, F.; Tetard, D.; Dammak, H. Freeze-Dried Nanometric Neodymium-Doped YAG Powders for Transparent Ceramics. J. Mater. Process. Technol. 2008, 199, 314–320. DOI: 10.1016/j.jmatprotec.2007.08.022.
  • El-Himri, A.; Marrero-López, D.; Ruiz-Morales, J. C.; Peña-Martínez, J.; Núñez, P. Structural and Electrochemical Characterisation of Pr0.7Ca0.3Cr1-yMnyO3-δ as Symmetrical Solid Oxide Fuel Cell Electrodes. J. Power Sources 2009, 188, 230–237. DOI: 10.1016/j.jpowsour.2008.11.050.
  • Liu, X. Z.; Piao, L. Y.; Mao, L. J.; Hao, S. J.; Yang, L.; Ju, S. T. Preparation of High Specific Surface Area Nano-Alumina by Vacuum Freeze Drying. Acta Phys.-Chim. Sin. 2010, 26, 1171–1176.
  • Andrieu, J.; Vessot, S. A Review on Experimental Determination and Optimization of Physical Quality Factors during Pharmaceuticals Freeze-Drying Cycles. Drying Technol. 2018, 36, 129–145. DOI: 10.1080/07373937.2017.1340895.
  • Dalvi-Isfahan, M.; Hamdami, N.; Xanthakis, E.; Le-Bail, A. Review on the Control of Ice Nucleation by Ultrasound Waves, Electric and Magnetic Fields. J. Food Eng. 2017, 195, 222–234. DOI: 10.1016/j.jfoodeng.2016.10.001.
  • Passot, S.; Tréléa, I. C.; Marin, M.; Galan, M.; Morris, G. J.;.; Fonseca, F. ; Effect of Controlled Ice Nucleation on Primary Drying Stage and Protein Recovery in Vials Cooled in a Modified Freeze-Dryer. J. Biomech. Eng. 2009, 131, 074511. DOI: 10.1115/1.3143034.
  • Zhecheva, E.; Mladenov, M.; Zlatilova, P.; Koleva, V.; Stoyanova, R. Particle Size Distribution and Electrochemical Properties of LiFePO4 Prepared by a Freeze-Drying Method. J. Phys. Chem. Solids. 2010, 71, 848–853. DOI: 10.1016/j.jpcs.2010.02.012.
  • Koleva, V.; Stoyanova, R.; Zhecheva, E. Nano-Crystalline LiMnPO4 Prepared by a New Phosphate-Formate Precursor Method. Mater. Chem. Phys. 2010, 121, 370–377. DOI: 10.1016/j.matchemphys.2010.01.043.
  • Acuña, L. M.; Peña-Martínez, J.; Marrero-López, D.; Fuentes, R. O.; Nuñez, P.; Lamas, D. G. Electrochemical Performance of Nanostructured La0.6Sr0.4CoO3-δ and Sm0.5Sr0.5CoO3-δ Cathodes for IT-SOFCs. J. Power Sources 2011, 196, 9276–9283. DOI: 10.1016/j.jpowsour.2011.07.067.
  • Liu, H. M.; Wang, Y. G.; Yang, W. S.; Zhou, H. S. A Large Capacity of LiV3O8 Cathode Material for Rechargeable Lithium-Based Batteries. Electrochim. Acta 2011, 56, 1392–1398. DOI: 10.1016/j.electacta.2010.10.049.
  • Shlyakhtin, O. A.; Choi, S. H.; Yoon, Y. S.; Oh, Y. J. Accelerated Synthesis and Electrochemical Performance of Li1+x(Ni0.5Mn0.5)O2+δ Cathode Materials. J. Power Sources 2005, 141, 122–128. DOI: 10.1016/j.jpowsour.2004.08.052.
  • Bakal, A.; Hayakawa, K. I. Heat Transfer during Freezing and Thawing of Foods. Adv. Food Res. 1973, 20, 217–256.
  • Nakagawa, K.; Hottot, A.; Vessot, S.; Andrieu, J. Modeling of Freezing Step during Freeze‐Drying of Drugs in Vials. AICHE J. 2007, 53, 1362–1372. DOI: 10.1002/aic.11147.
  • Hottot, A.; Peczalski, R.; Vessot, S.; Andrieu, J. Freeze-Drying of Pharmaceutical Proteins in Vials: Modeling of Freezing and Sublimation Steps. Drying Technol. 2006, 24, 561–570. DOI: 10.1080/07373930600626388.
  • Lin, S. H. Mathematical Model for Freezing of Calcium Alginate Gel Balls. J. Food Eng. 1994, 21, 305–313. DOI: 10.1016/0260-8774(94)90075-2.
  • Brülls, M.; Rasmuson, A. Heat Transfer in Vial Lyophilization. Int. J. Pharm. 2002, 246, 1–16.
  • Nikitenko, N. I.; Kol'Chik, Y. N. Mathematical Modeling of Heat and Mass Transfer in Irregular Freezing of Alloys. J. Eng. Phys. Thermophys. 1992, 63, 1256–1262. DOI: 10.1007/BF00853529.
  • Voller, V. R.; Brent, A. D.; Prakash, C. The Modelling of Heat, Mass and Solute Transport in Solidification Systems. Int. J. Heat Mass Transf. 1989, 32, 1719–1731. DOI: 10.1016/0017-9310(89)90054-9.
  • Brent, A. D.; Voller, V. R.; Reid, K. J. Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal. Numer. Heat Transf. 1988, 13, 297–318. DOI: 10.1080/10407788808913615.
  • Voller, V. R.; Prakash, C. A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase Change Problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. DOI: 10.1016/0017-9310(87)90317-6.
  • Sandall, O. C.; King, C. J.; Wilke, C. R. The Relationship between Transport Properties and Rates of Freeze-Drying of Poultry Meat. AICHE J. 1967, 13, 428–438. DOI: 10.1002/aic.690130309.
  • Zou, H. F.; Ye, S.; W, D. X.; Li, H. X.; Cao, X. Z.; Yan, L. J. Model of Mass and Heat Transfer during Vacuum Freeze-Drying for Cornea. Math. Probl. Eng. 2012, 4, 1–16.
  • Litchfield, R. J.; Liapis, A. I. An Adsorption-Sublimation Model for a Freeze Dryer. Chem. Eng. Sci. 1979, 34, 1085–1090. DOI: 10.1016/0009-2509(79)85013-7.
  • Fox, E. C.; Thomson, W. J. Coupled Heat and Mass Transport in Unsteady Sublimation Drying. AICHE J. 1972, 18, 792–797. DOI: 10.1002/aic.690180422.
  • Nastaj, J. F. A Parabolic Cylindrical Stefan Problem in Vacuum Freeze Drying of Random Solids. Int. Commun. Heat Mass Transf. 2003, 30, 93–104. DOI: 10.1016/S0735-1933(03)00011-3.
  • Nastaj, J. F.; Witkiewicz, K. A Parabolic Spherical Moving Boundary in Vacuum Freeze Drying of Random Solids. Int. Commun. Heat Mass Transf. 2004, 31, 549–560. DOI: 10.1016/S0735-1933(04)00035-1.
  • Kumagai, H.; Nakamura, K.; Yano, T. Rate Analysis of the Freeze Drying of Liquid Foods by a Modified Uniformly Retreating Ice Front Model. J. Agric. Chem. Soc. Japan. 1991, 55, 737–742. DOI: 10.1080/00021369.1991.10870660.
  • Kumagai, H.; Nakamura, K.; Yano, T. Rate Analysis of Freeze Drying of a Model System by a Uniformly Retreating Ice Front Model. Agri. Biol. Chem. 1991, 55, 731–736. DOI: 10.1080/00021369.1991.10870659.
  • Zhai, S. L.; Su, H.; Taylor, R.; Slater, N. K. H. Pure Ice Sublimation within Vials in a Laboratory Lyophiliser; Comparison of Theory with Experiment. Chem. Eng. Sci. 2005, 60, 1167–1176. DOI: 10.1016/j.ces.2004.09.078.
  • Millman, M. J.; Liapis, A. I.; Marchello, J. M. An Analysis of the Lyophilization Process Using a Sorption: Sublimation Model and Various Operational Policies. AICHE J. 1985, 31, 1594–1604. DOI: 10.1002/aic.690311003.
  • Mascarenhas, W. J.; Akay, H. U.; Pikal, M. J. A Computational Model for Finite Element Analysis of the Freeze-Drying Process. Comput. Methods Appl. Mech. Eng. 1997, 148, 105–124. DOI: 10.1016/S0045-7825(96)00078-3.
  • Sheehan, P.; Liapis, A. I. Modeling of the Primary and Secondary Drying Stages of the Freeze Drying of Pharmaceutical Products in Vials: Numerical Results Obtained from the Solution of a Dynamic and Spatially Multi-Dimensional Lyophilization Model for Different Operational Policies. Biotechnol. Bioeng. 1998, 60, 712–728. DOI: 10.1002/(SICI)1097-0290(19981220)60:6<712::AID-BIT8>3.0.CO;2-4.
  • Gan, K. H.; Bruttini, R.; Crosser, O. K.; Liapis, A. I. Freeze-Drying of Pharmaceuticals in Vials on Trays: effects of Drying Chamber Wall Temperature and Tray Side on Lyophilization Performance. Int. J. Heat Mass Transf. 2005, 48, 1675–1687. DOI: 10.1016/j.ijheatmasstransfer.2004.12.004.
  • Velardi, S. A.; Barresi, A. A. Development of Simplified Models for the Freeze-Drying Process and Investigation of the Optimal Operating Conditions. Chem. Eng. Res. Des. 2008, 86, 9–22. DOI: 10.1016/j.cherd.2007.10.007.
  • Ferguson, W. J.; Lewis, R. W.; Tömösy, L. A Finite Element Analysis of Freeze-Drying of a Coffee Sample. Comput. Methods Appl. Mech. Eng. 1993, 108, 341–352. DOI: 10.1016/0045-7825(93)90009-M.
  • Liapis, A. I.; Litchfield, R. J. Numerical Solution of Moving Boundary Transport Problems in Finite Media by Orthogonal Collocation. Comput. Chem. Eng. 1979, 3, 615–621. DOI: 10.1016/0098-1354(79)80110-6.
  • George, J. P.; Datta, A. K. Development and Validation of Heat and Mass Transfer Models for Freeze-Drying of Vegetable Slices. J. Food Eng. 2002, 52, 89–93. DOI: 10.1016/S0260-8774(01)00091-7.
  • Wang, W.; Chen, G.; Mujumdar, A. S. Physical Interpretation of Solids Drying: An Overview on Mathematical Modeling Research. Dry. Technol. 2007, 25, 659–668. DOI: 10.1080/07373930701285936.
  • Nam, J. H.; Song, C. S. An Efficient Calculation of Multidimensional Freeze-Drying Problems Using Fixed Grid Method. Drying Technol. 2005, 23, 2491–2511. DOI: 10.1080/07373930500341757.
  • Nam, J. H.; Song, C. S. Numerical Simulation of Conjugate Heat and Mass Transfer during Multi-Dimensional Freeze Drying of Slab-Shaped Food Products. Int. J. Heat Mass Transf. 2007, 50, 4891–4900. DOI: 10.1016/j.ijheatmasstransfer.2007.08.004.
  • Warning, A. D.; Arquiza, J. M. R.; Datta, A. K. A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying. Food Bioprod. Process. 2015, 94, 637–648. DOI: 10.1016/j.fbp.2014.08.011.
  • Wang, W.; Chen, G. Heat and Mass Transfer Model of Dielectric-Material-Assisted Microwave Freeze-Drying of Skim Milk with Hygroscopic Effect. Chem. Eng. Sci. 2005, 60, 6542–6550. DOI: 10.1016/j.ces.2005.05.036.
  • Nastaj, J. F.; Witkiewicz, K. Mathematical Modeling of the Primary and Secondary Vacuum Freeze Drying of Random Solids at Microwave Heating. Int. J. Heat Mass Transf. 2009, 52, 4796–4806. DOI: 10.1016/j.ijheatmasstransfer.2009.06.015.
  • Wang, W.; Yang, J.; Hu, D.; Pan, Y. Q.; Wang, S. H.; Chen, G. H. Experimental and Numerical Investigations on Freeze-Drying of Porous Media with Prebuilt Porosity. Chem. Phys. Lett. 2018, 700, 80–87.
  • Wang, W.; Hu, D.; Pan, Y.; Chen, G. H. Numerical Investigation on Freeze-Drying of Aqueous Material Frozen with Pre-Built Pores. Chin. J. Chem. Eng. 2016, 24, 116–125. DOI: 10.1016/j.cjche.2015.07.017.
  • El-Maghlany, W. M.; Bedir, A. E. R.; Elhelw, M.; Attia, M. Freeze-Drying Modeling via Multi-Phase Porous Media Transport Model. Int. J. Therm. Sci. 2019, 135, 509–522. DOI: 10.1016/j.ijthermalsci.2018.10.001.
  • Halder, A.; Dhall, A.; Datta, A. K. An Improved, Easily Implementable, Porous Media Based Model for Deep-Fat Frying: Part II: Results, Validation and Sensitivity Analysis. Food Bioprod. Process. 2007, 85, 209–219. DOI: 10.1205/fbp07033.
  • Huang, B.; Pan, Z. F.; Su, X. Y.; An, L. Recycling of Lithium-Ion Batteries: Recent Advances and Perspectives. J. Power Sources 2018, 399, 274–286. DOI: 10.1016/j.jpowsour.2018.07.116.
  • Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Reversible Anionic Redox Chemistry in Highcapacity Layered-Oxide Electrodes. Nat. Mater. 2013, 12, 827–835.
  • Jamin, C.; Traina, K.; Eskenazi, D.; Krins, N.; Cloots, R.; Vertruyen, B.; Boschini, F. Effect of Freeze-Drying and Self-Ignition Process on the Microstructural and Electrochemical Properties of Li4Ti5O12. Mater. Res. Bull. 2013, 48, 4641–4646. DOI: 10.1016/j.materresbull.2013.07.035.
  • Qiao, Y. Q.; Wang, X. L.; Mai, Y. J.; Xia, X. H.; Zhang, J.; Gu, C. D.; Tu, J. P. Freeze-Drying Synthesis of Li3V2(PO4)3/C Cathode Material for Lithium-Ion Batteries. J. Alloy. Compd. 2012, 536, 132–137. DOI: 10.1016/j.jallcom.2012.04.118.
  • Shi, S. J.; Tu, J. P.; Tang, Y. Y.; Yu, Y. X.; Zhang, Y. Q.; Wang, X. L. Synthesis and Electrochemical Performance of Li1.131Mn0.504Ni0.243Co0.122O2 Cathode Materials for Lithium Ion. J. Power Sources 2013, 221, 300–307. DOI: 10.1016/j.jpowsour.2012.08.031.
  • Shlyakhtin, O. A.; Yoon, Y. S.; Choi, S. H.; Oh, Y.-J. Freeze Drying Synthesis of LiNi0.5Mn0.5O2 Cathode Materials. Electrochim. Acta 2004, 50, 505–509. DOI: 10.1016/j.electacta.2004.05.051.
  • Mercier, T. L.; Gaubicher, J.; Bermejo, E.; Chabre, Y.; Quarton, M. Morphology and Electrochemical Behavior of an Ultrafine LiMn2O4 Powder Obtained by a New Route, from Freeze-Dried Precursors. J. Mater. Chem. 1999, 9, 567–570. DOI: 10.1039/a805178j.
  • Palomares, V.; Goni, A.; de Muro, I. G.; de Meatza, I.; Bengoechea, M.; Miguel, O.; Rojo, T. New Freeze-Drying Method for LiFePO4 Synthesis. J. Power Sources 2007, 171, 879–885. DOI: 10.1016/j.jpowsour.2007.06.161.
  • Fujita, Y.; Hira, T.; Shida, K.; Tsushida, M.; Liao, J. S.; Matsuda, M. Microstructure of High Battery-Performance Li2FeSiO4/C Composite Powder Synthesized by Combining Different Carbon Sources in Spray-Freezing/Freeze-Drying Process. Ceram. Int. 2018, 44, 11211–11217. DOI: 10.1016/j.ceramint.2018.03.158.
  • Guo, S. N.; Bai, Y.; Geng, Z. F.; Wu, F.; Wu, C. Facile Synthesis of Li3V2(PO4)3/C Cathode Material for Lithium-Ion Battery via Freeze-Drying. J. Energy. Chem. 2018, 000, 1–7.
  • Wang, Y. H.; Mei, R.; Yang, X. M. Enhanced Electrochemical Properties of LiFePO4/C Synthesized with Two Kinds of Carbon Sources, PEG-4000 (Organic) and Super p (Inorganic). Ceram. Int. 2014, 40, 8439–8444. DOI: 10.1016/j.ceramint.2014.01.054.
  • Kuzmanović, M.; Jugović, D.; Mitrić, M.; Jokić, B.; Cvjetićanin, N.; Uskoković, D. The Use of Various Dicarboxylic Acids as a Carbon Source for the Preparation of LiFePO4/C Composite. Ceram. Int. 2015, 41, 6753–6758. DOI: 10.1016/j.ceramint.2015.01.121.
  • Surace, Y.; Simões, M.; Karvonen, L.; Yo.on, S.; Pokrant, S.; Weidenkaff, A. Freeze Drying Synthesis of Li3MnO4 Cathode Material for Li-Ion Batteries: A Physico-Electrochemical Study. J. Alloy. Compd. 2015, 644, 297–303.
  • Wang, X. D.; Ma, Y.; Li, S. H.; Zhu, B.; Muhammed, M. SDC/Na2CO3 Nanocomposite: New Freeze Drying Based Synthesis and Application as Electrolyte in Low-Temperature Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2012, 37, 19380–19387. DOI: 10.1016/j.ijhydene.2011.10.061.
  • Asghar, M. I.; Heikkilä, M.; Lund, P. D. Advanced Low-Temperature Ceramic Nanocomposite Fuel Cells Using Ultra High Ionic Conductivity Electrolytes Synthesized through Freeze-Dried Method and Solid-Route. Mater. Today Energy 2017, 5, 338–346. DOI: 10.1016/j.mtener.2017.07.017.
  • Mori, T.; Drennan, J.; Wang, Y. R.; Lee, J. H.; Li, J. G.; Ikegami, T. Electrolytic Properties and Nanostructural Features in the La2O3CeO2 System. J. Electrochem. Soc. 2003, 150, A665–A673. DOI: 10.1149/1.1567265.
  • Ortiz-Vitoriano, N.; Ruiz de Larramendi, I.; Gil de Muro, I.; Ruiz de Larramendi, J. I.; Rojo, T. Nanoparticles of La0.8Ca0.2Fe0.8Ni0.2O3-δ Perovskite for Solid Oxide Fuel Cell Application. Mater. Res. Bull. 2010, 45, 1513–1519. DOI: 10.1016/j.materresbull.2010.06.015.
  • Traina, K.; Henrist, C.; Vertruyen, B.; Cloots, R. Dense La0.9Sr0.1Ga0.8Mg0.2O2.85 Electrolyte for IT-SOFC’s: Sintering Study and Electrochemical Characterization. J. Alloy. Compd. 2011, 509, 1493–1500. DOI: 10.1016/j.jallcom.2010.10.117.
  • Piva, D. H.; Piva, R. H.; Rocha, M. C.; Dias, J. A.; Montedo, O. R. K.; Malavazi, I.; Morelli, M. R. Antibacterial and Photocatalytic Activity of ZnO Nanoparticles from Zn(OH)2 Dehydrated by Azeotropic Distillation, Freeze Drying, and Ethanol Washing. Adv. Powder Technol. 2017, 28, 463–472. DOI: 10.1016/j.apt.2016.11.001.
  • Mohan, R.; Krishnamoorthy, K.; Kim, S.-J. Diameter Dependent Photocatalytic Activity of ZnO Nanowires Grown by Vapor Transport Technique. Chem. Phys. Lett. 2012, 539, 83–88. DOI: 10.1016/j.cplett.2012.04.054.
  • Li, X. L.; He, S. S.; Liu, X. H.; Jin, J. S.; Meng, H. Polymer-Assisted Freeze-Drying Synthesis of Ag-Doped ZnO Nanoparticles with Enhanced Photocatalytic Activity. Ceram. Int. 2019, 45, 494–502. DOI: 10.1016/j.ceramint.2018.09.195.
  • Bin, Z.; Hui, L. Three-Dimensional Porous graphene-Co3O4 Nanocomposites for High Performance Photocatalysts. Appl. Surf. Sci. 2015, 357, 439–444. DOI: 10.1016/j.apsusc.2015.09.051.
  • Zhang, J. J.; Liu, X.; Ye, T.; Zheng, G. P.; Zheng, X. C.; Liu, P.; Guan, X. X. Novel Assembly of Homogeneous Reduced Graphene Oxide-Doped Mesoporous TiO2 Hybrids for Elimination of Rhodamine-B Dye under Visible Light Irradiation. J. Alloy. Compd. 2017, 698, 819–827. DOI: 10.1016/j.jallcom.2016.12.279.
  • Katz, A.; Barraud, E.; Lemonniera, S.; Sorrel, E.; Boehmler, J.; Blanc, A.; Eichorn, M.; d’Astorg, S. Influence of Powder Physicochemical Characteristics on Microstructural and Optical Aspects of YAG and Er:YAG Ceramics Obtained by SPS. Eram. Int. 2011, 43, 10673–10682. DOI: 10.1016/j.ceramint.2017.04.114.
  • Zhou, Z. P.; Yang, F.; Chen, J.; Gao, X. E.; Lu, Y. An Easy Way to Synthesize YAG Nanoparticles for Transparent Ceramics via Allegro Vacuum Freeze Drying. Adv. Mater. Res. 2013, 710, 203–207. DOI: 10.4028/www.scientific.net/AMR.710.203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.