4,011
Views
138
CrossRef citations to date
0
Altmetric
Articles

Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review

, &
Pages 235-258 | Received 17 Feb 2019, Accepted 29 Jun 2019, Published online: 19 Aug 2019

References

  • Desai, K. G. H.; Park, H. J. Recent Developments in Microencapsulation of Food Ingredients. Dry. Technol. 2005, 23, 1361–1394. DOI:10.1081/DRT-200063478.
  • Kalusevic, A.; Levic, S.; Calija, B.; Pantic, M.; Belovic, M.; Pavlovic, V.; Bugarski, B.; Milic, J.; Zilic, S.; Nedovic, V. Microencapsulation of Anthocyanin-Rich Black Soybean Coat Extract by Spray Drying Using Maltodextrin, Gum Arabic and Skimmed Milk Powder. J. Microencapsul. 2017, 34, 475–487. DOI:10.1080/02652048.2017.1354939.
  • Lee, Y. K.; Ganesan, P.; Baharin, B. S.; Kwak, H. S. Characteristics, Stability, and Release of Peanut Sprout Extracts in Powdered Microcapsules by Spray Drying. Dry. Technol. 2015, 33, 1991–2001. DOI:10.1080/07373937.2014.951123.
  • Tavares, L.; Noreña, C. P. Z. Encapsulation of Garlic Extract Using Complex Coacervation with Whey Protein Isolate and Chitosan as Wall Materials Followed by Spray Drying. Food Hydrocolloid. 2019, 89, 360–369. DOI:10.1016/j.foodhyd.2018.10.052.
  • Santhanam, A. K.; Lekshmi, M.; Chouksey, M. K.; Tripathi, G.; Gudipati, V. Delivery of Omega-3 Fatty Acids into Cake through Emulsification of Fish Oil-in-Milk and Encapsulation by Spray Drying with Added Polymers. Dry. Technol. 2015, 33, 83–91. DOI:10.1080/07373937.2014.934832.
  • Ma, D.; Tu, Z. C.; Wang, H.; Zhang, Z. P.; McClements, D. J. Fabrication and Characterization of Nanoemulsion-Coated Microgels: Electrostatic Deposition of Lipid Droplets on Alginate Beads. Food Hydrocolloid. 2017, 71, 149–157. DOI:10.1016/j.foodhyd.2017.05.015.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Different Nanocarriers for Encapsulation of Curcumin. Crit. Rev. Food Sci. Nutr. 2018, 1–30. DOI:10.1080/10408398.2018.1495174.
  • Wang, S. J.; Shi, Y.; Han, L. P. Development and Evaluation of Microencapsulated Peony Seed Oil Prepared by Spray Drying: Oxidative Stability and Its Release Behavior during in-Vitro Digestion. J. Food. Eng. 2018, 231, 1–9. DOI:10.1016/j.jfoodeng.2018.03.007.
  • McClements, D. J. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. DOI:10.1016/j.cis.2018.02.002.
  • Hoyos-Leyva, J.; Bello-Perez, L.; Agama-Acevedo, J.; Alvarez-Ramirez, J.; Jaramillo-Echeverry, L. Characterization of Spray Drying Microencapsulation of Almond Oil into Taro Starch Spherical Aggregates. LWT Food Sci. Technol. 2019, 101, 526–533. DOI:10.1016/j.lwt.2018.11.079.
  • Mousavinejad, G.; Emam-Djomeh, Z.; Rezaei, K.; Khodaparast, M. H. H. Identification and Quantification of Phenolic Compounds and Their Effects on Antioxidant Activity in Pomegranate Juices of Eight Iranian Cultivars. Food Chem. 2009, 115, 1274–1278. DOI:10.1016/j.foodchem.2009.01.044.
  • Cheng, A. W.; Xie, H. X.; Qi, Y.; Liu, C.; Guo, X.; Sun, J. Y.; Liu, L. N. Effects of Storage Time and Temperature on Polyphenolic Content and Qualitative Characteristics of Freeze-Dried and Spray-Dried Bayberry Powder. LWT Food Sci. Technol. 2017, 78, 235–240. DOI:10.1016/j.lwt.2016.12.027.
  • Yamashita, C.; Chung, M. M. S.; dos Santos, C.; Mayer, C. R. M.; Moraes, I. C. F.; Branco, I. G. Microencapsulation of an Anthocyanin-Rich Blackberry (Rubus Spp.) by-Product Extract by Freeze-Drying. LWT Food Sci. Technol. 2017, 84, 256–262. DOI:10.1016/j.lwt.2017.05.063.
  • Laokuldilok, T.; Kanha, N. Microencapsulation of Black Glutinous Rice Anthocyanins Using Maltodextrins Produced from Broken Rice Fraction as Wall Material by Spray Drying and Freeze Drying. J. Food Process. Pres. 2017, 41, e12877. DOI:10.1111/jfpp.12877.
  • Moser, P.; De Souza, R. T.; Telis, V. R. N. Spray Drying of Grape Juice from Hybrid CV. BRS Violeta: Microencapsulation of Anthocyanins Using Protein/Maltodextrin Blends as Drying Aids. J. Food Process. Pres. 2017, 41, e12852. DOI:10.1111/jfpp.12852.
  • Chen, Q.; Zhong, F.; Wen, J. Y.; McGillivray, D.; Quek, S. Y. Properties and Stability of Spray-Dried and Freeze-Dried Microcapsules Co-Encapsulated with Fish Oil, Phytosterol Esters, and Limonene. Dry. Technol. 2013, 31, 707–716. DOI:10.1080/07373937.2012.755541.
  • Mahdavi, S. A.; Jafari, S. M.; Ghorbani, M.; Assadpoor, E. Spray-Drying Microencapsulation of Anthocyanins by Natural Biopolymers: A Review. Dry. Technol. 2014, 32, 509–518. DOI:10.1080/07373937.2013.839562.
  • Fu, D.; Deng, S.; McClements, D. J.; Zhou, L.; Zou, L.; Yi, J.; Liu, C.; Liu, W. J. Encapsulation of β-Carotene in Wheat Gluten Nanoparticle-Xanthan Gum-Stabilized Pickering Emulsions: Enhancement of Carotenoid Stability and Bioaccessibility. Food Hydrocolloid. 2019, 89, 80–89. DOI:10.1016/j.foodhyd.2018.10.032.
  • Lee, W. J.; Tan, C. P.; Sulaiman, R.; Smith, R. L.; Chong, G. H. Microencapsulation of Red Palm Oil as an Oil-in-Water Emulsion with Supercritical Carbon Dioxide Solution-Enhanced Dispersion. J. Food. Eng. 2018, 222, 100–109. DOI:10.1016/j.jfoodeng.2017.11.011.
  • Hong, S. J.; Garcia, C. V.; Park, S. J.; Shin, G. H.; Kim, J. T. Retardation of Curcumin Degradation under Various Storage Conditions via Turmeric Extract-Loaded Nanoemulsion System. LWT Food Sci. Technol. 2019, 100, 175–182. DOI:10.1016/j.lwt.2018.10.056.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Safari, M.; Askari, G.; Salami, M. J. Microwave-Assisted Extraction of Hempseed Oil: Studying and Comparing of Fatty Acid Composition, Antioxidant Activity, Physiochemical and Thermal Properties with Soxhlet Extraction. J. Food Sci. Technol. 2019, 1–13. DOI:10.1007/s13197-019-03890-8.
  • Rezvankhah, A.; Emam‐Djomeh, Z.; Safari, M.; Askari, G.; Salami, M. J. Investigation on the Extraction Yield, Quality, and Thermal Properties of Hempseed Oil during Ultrasound‐Assisted Extraction: A Comparative Study. J. Food Process. Pres. 2018, 42, e13766. DOI:10.1111/jfpp.13766.
  • Alehosseini, A.; Ghorani, B.; Sarabi-Jamab, M.; Tucker, N. J. Principles of Electrospraying: A New Approach in Protection of Bioactive Compounds in Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2346–2363. DOI:10.1080/10408398.2017.1323723.
  • Jarunglumlert, T.; Nakagawa, K. Spray Drying of Casein Aggregates Loaded with Beta-Carotene: Influences of Acidic Conditions and Storage Time on Surface Structure and Encapsulation Efficiencies. Dry. Technol. 2013, 31, 1459–1465. DOI:10.1080/07373937.2013.800548.
  • Ye, J.-H.; Augustin, M. A. J. Nano-and Micro-Particles for Delivery of Catechins: Physical and Biological Performance. Crit. Rev. Food Sci. Nutr. 2019, 59, 1563–1579. DOI:10.1080/10408398.2017.1422110.
  • Lavanya, M.; Kathiravan, T.; Moses, J.; Anandharamakrishnan, C. J. Influence of Spray-Drying Conditions on Microencapsulation of Fish Oil and Chia Oil. Dry. Technol. 2019, 1–14. DOI:10.1080/07373937.2018.1553181.
  • Sittipummongkol, K.; Pechyen, C. Production, Characterization and Controlled Release Studies of Biodegradable Polymer Microcapsules Incorporating Neem Seed Oil by Spray Drying. Food Packag. Shelf. 2018, 18, 131–139. DOI:10.1016/j.fpsl.2018.09.001.
  • Artiga-Artigas, M.; Lanjari-Pérez, Y.; Martín-Belloso, O. Curcumin-Loaded Nanoemulsions Stability as Affected by the Nature and Concentration of Surfactant. Food Chem. 2018, 266, 466–474. DOI:10.1016/j.foodchem.2018.06.043.
  • Elzoghby, A. O.; El-Fotoh, W. S. A.; Elgindy, N. A. Casein-Based Formulations as Promising Controlled Release Drug Delivery Systems. J. Control. Release. 2011, 153, 206–216. DOI:10.1016/j.jconrel.2011.02.010.
  • Mobus, K.; Siepmann, J.; Bodmeier, R. Zinc-Alginate Microparticles for Controlled Pulmonary Delivery of Proteins Prepared by Spray-Drying. Eur. J. Pharm. Biopharm. 2012, 81, 121–130. DOI:10.1016/j.ejpb.2012.01.018.
  • Bouyer, E.; Mekhloufi, G.; Rosilio, V.; Grossiord, J. L.; Agnely, F. Proteins, Polysaccharides, and Their Complexes Used as Stabilizers for Emulsions: Alternatives to Synthetic Surfactants in the Pharmaceutical Field?. Int. J. Pharm. 2012, 436, 359–378. DOI:10.1016/j.ijpharm.2012.06.052.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. DOI:10.1016/j.cis.2015.05.003.
  • Farias-Cervantes, V. S.; Chavez-Rodriguez, A.; Garcia-Salcedo, P. A.; Garcia-Lopez, P. M.; Casas-Solis, J.; Andrade-Gonzalez, I. Antimicrobial Effect and in Vitro Release of Anthocyanins from Berries and Roselle Obtained via Microencapsulation by Spray Drying. J. Food Process. Pres. 2018, 42, e13713. DOI:10.1111/jfpp.13713.
  • Ibarra, J.; Encinas, D.; Blanco, M.; Barbosa, S.; Taboada, P.; Juarez, J.; Valdez, M. A. Co-Encapsulation of Magnetic Nanoparticles and Cisplatin within Biocompatible Polymers as Multifunctional Nanoplatforms: Synthesis, Characterization, and In Vitro Assays. Mater. Res. Express. 2018, 5, 1.
  • Strobel, S. A.; Scher, H. B.; Nitin, N.; Jeoh, T. Control of Physicochemical and Cargo Release Properties of Cross-Linked Alginate Microcapsules Formed by Spray-Drying. J. Drug Deliv. Sci. Technol. 2019, 49, 440–447. DOI:10.1016/j.jddst.2018.12.011.
  • Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The Microencapsulation of Maqui (Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules 2018, 23, 1227. DOI:10.3390/molecules23051227.
  • Liu, W.; Chen, X. D.; Selomulya, C. On the Spray Drying of Uniform Functional Microparticles. Particuology 2015, 22, 1–12. DOI:10.1016/j.partic.2015.04.001.
  • Goyal, A.; Sharma, V.; Sihag, M. K.; Arora, S.; Singh, A. K.; Sabikhi, L. Effect of Microencapsulation and Spray Drying on Oxidative Stability of Flaxseed Oil and Its Release Behavior under Simulated Gastrointestinal Conditions. Dry. Technol. 2016, 34, 810–821. DOI:10.1080/07373937.2015.1081929.
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X. D.; Perrone, Í. T.; de Carvalho, A. F.; Fenelon, M.; Kelly, P. J. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Dry. Technol. 2016, 34, 1773–1790. DOI:10.1080/07373937.2016.1233114.
  • Huang, X.; Sormoli, M. E.; Langrish, T. A. G. Review of Some Common Commercial and Noncommercial Lab-Scale Spray Dryers and Preliminary Tests for a Prototype New Spray Dryer. Dry. Technol. 2018, 36, 1900–1912. DOI:10.1080/07373937.2018.1459679.
  • You, X.; Zhou, Z.; Liao, Z.; Che, L.; Chen, X. D.; Wu, W. D.; Woo, M.; Selomulya, C. Dairy Milk Particles Made with a Mono-Disperse Droplet Spray Dryer (MDDSD) Investigated for the Effect of Fat. Dry. Technol. 2014, 32, 528–542. DOI:10.1080/07373937.2013.840650.
  • Goula, A. M.; Adamopoulos, K. G. A New Technique for Spray-Dried Encapsulation of Lycopene. Dry. Technol. 2012, 30, 641–652. DOI:10.1080/07373937.2012.655871.
  • Re, M. I. Formulating Drug Delivery Systems by Spray Drying. Dry.Technol. 2006, 24, 433–446. DOI:10.1080/07373930600611877.
  • Millqvist-Fureby, A. Approaches to Encapsulation of Active Food Ingredients in Spray-Drying. ACS Sym. Ser. 2009, 1007, 233–245. DOI:10.1021/bk-2009-1007.ch015.
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro-and Nanospheres/Particles Preparation: A Review. Dry. Technol. 2016, 34, 1758–1772. DOI:10.1080/07373937.2016.1232271.
  • Arepally, D.; Goswami, T. K. Effect of Inlet Air Temperature and Gum Arabic Concentration on Encapsulation of Probiotics by Spray Drying. LWT Food Sci. Technol. 2019, 99, 583–593. DOI:10.1016/j.lwt.2018.10.022.
  • Timilsena, Y. P.; Vongsvivut, J.; Tobin, M. J.; Adhikari, R.; Barrow, C.; Adhikari, B. Investigation of Oil Distribution in Spray-Dried Chia Seed Oil Microcapsules Using synchrotron-FTIR Microspectroscopy. Food Chem. 2019, 275, 457–466. DOI:10.1016/j.foodchem.2018.09.043.
  • Karthik, P.; Anandharamakrishnan, C. J. F.; Technology, B. Microencapsulation of Docosahexaenoic Acid by Spray-Freeze-Drying Method and Comparison of Its Stability with Spray-Drying and Freeze-Drying Methods. Food Bioprocess. Technol. 2013, 6, 2780–2790. DOI:10.1007/s11947-012-1024-1.
  • Rajabi, H.; Ghorbani, M.; Jafari, S. M.; Mahoonak, A. S.; Rajabzadeh, G. Retention of Saffron Bioactive Components by Spray Drying Encapsulation Using Maltodextrin, Gum Arabic and Gelatin as Wall Materials. Food Hydrocolloid. 2015, 51, 327–337. DOI:10.1016/j.foodhyd.2015.05.033.
  • Wais, U.; Jackson, A. W.; Zuo, Y.; Xiang, Y.; He, T.; Zhang, H. Drug Nanoparticles by Emulsion-Freeze-Drying via the Employment of Branched Block Copolymer Nanoparticles. J. Control. Release. 2016, 222, 141–150. DOI:10.1016/j.jconrel.2015.12.022.
  • Ray, S.; Raychaudhuri, U.; Chakraborty, R. An Overview of Encapsulation of Active Compounds Used in Food Products by Drying Technology. Food Biosci. 2016, 13, 76–83. DOI:10.1016/j.fbio.2015.12.009.
  • Nayak, C. A.; Rastogi, N. K. Effect of Selected Additives on Microencapsulation of Anthocyanin by Spray Drying. Dry. Technol. 2010, 28, 1396–1404. DOI:10.1080/07373937.2010.482705.
  • Quispe-Condori, S.; Saldana, M. D. A.; Temelli, F. Microencapsulation of Flax Oil with Zein Using Spray and Freeze Drying. LWT Food Sci. Technol. 2011, 44, 1880–1887. DOI:10.1016/j.lwt.2011.01.005.
  • Hoyos-Leyva, J. D.; Chavez-Salazar, A.; Castellanos-Galeano, F.; Bello-Perez, L. A.; Alvarez-Ramirez, J. Physical and Chemical Stability of l-Ascorbic Acid Microencapsulated into Taro Starch Spherical Aggregates by Spray Drying. Food Hydrocolloid. 2018, 83, 143–152. DOI:10.1016/j.foodhyd.2018.05.002.
  • McClements, D. J.; Jafari, S. M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. DOI:10.1016/j.cis.2017.12.001.
  • Nawas, T.; Azam, M. S.; Ramadhan, A. H.; Xu, Y.; Xia, W. Impact of Wall Material on the Physiochemical Properties and Oxidative Stability of Microencapsulated Spray Dried Silver Carp Oil. J. Aquat. Food Prod. Technol. 2019, 28, 49–63. DOI:10.1080/10498850.2018.1560380.
  • Nakagawa, K.; Fujii, Y. Protein-Based Microencapsulation with Freeze Pretreatment: Spray-Dried Oil in Water Emulsion Stabilized by the Soy Protein Isolate–Gum Acacia Complex. Dry. Technol. 2015, 33, 1541–1549. DOI:10.1080/07373937.2015.1010208.
  • Eratte, D.; Gengenbach, T. R.; Dowling, K.; Barrow, C. J.; Adhikari, B. Survival, Oxidative Stability, and Surface Characteristics of Spray Dried co-Microcapsules Containing Omega-3 Fatty Acids and Probiotic Bacteria. Dry. Technol. 2016, 34, 1926–1935. DOI:10.1080/07373937.2016.1141782.
  • Mcclements, D. J.; Decker, E. A.; Park, Y. Controlling Lipid Bioavailability through Physicochemical and Structural Approaches. Crit. Rev. Food Sci. 2008, 49, 48–67. DOI:10.1080/10408390701764245.
  • McClements, D. J.; Li, Y. Structured Emulsion-Based Delivery Systems: Controlling the Digestion and Release of Lipophilic Food Components. Adv. Colloid Interface Sci. 2010, 159, 213–228. DOI:10.1016/j.cis.2010.06.010.
  • McClements, D. J.; Rao, J. Food-Grade Nanoemulsions: formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. DOI:10.1080/10408398.2011.559558.
  • McClements, D. J. Utilizing Food Effects to Overcome Challenges in Delivery of Lipophilic Bioactives: Structural Design of Medical and Functional Foods. Expert Opin. Drug Deliv. 2013, 10, 1621–1632. DOI:10.1517/17425247.2013.837448.
  • Aditya, N. P.; Espinosa, Y. G.; Norton, I. T. Encapsulation Systems for the Delivery of Hydrophilic Nutraceuticals: Food Application. Biotechnol. Adv. 2017, 35, 450–457. DOI:10.1016/j.biotechadv.2017.03.012.
  • Mozafari, M. R.; Khosravi-Darani, K.; Borazan, G. G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. J. Food Prop. 2008, 11, 833–844. DOI:10.1080/10942910701648115.
  • Augustin, M. A.; Sanguansri, L. Use of Encapsulation to Inhibit Oxidation of Lipid Ingredients in Foods. In Oxidation in Foods and Beverages and Antioxidant Applications, Volume 2: Management in different industry sectors, Decker, E. A.; Elias, R. J.; McClements, D. J., Eds. Woodhead Publishing Ltd: Cambridge, UK, 2010; pp. 479–495.
  • Syamaladevi, R. M.; Insan, S. K.; Dhawan, S.; Andrews, P.; Sablani, S. S. Physicochemical Properties of Encapsulated Red Raspberry (Rubus idaeus) Powder: Influence of High-Pressure Homogenization. Dry. Technol. 2012, 30, 484–493. DOI:10.1080/07373937.2011.647369.
  • Marefati, A.; Rayner, M.; Timgren, A.; Dejmek, P.; Sjöö, M. Freezing and Freeze-Drying of Pickering Emulsions Stabilized by Starch Granules. Colloids Surf. A Physicochem. Eng. Aspects 2013, 436, 512–520. DOI:10.1016/j.colsurfa.2013.07.015.
  • Li, R.; Lin, D.; Roos, Y. H.; Miao, S. Glass Transition, Structural Relaxation and Stability of Spray-Dried Amorphous Food Solids: A Review. Dry. Technol. 2018, 37, 287–300. DOI:10.1080/07373937.2018.1459680.
  • Mourtzinos, I.; Kalogeropoulos, N.; Papadakis, S. E.; Konstantinou, K.; Karathanos, V. T. Encapsulation of Nutraceutical Monoterpenes in Beta-Cyclodextrin and Modified Starch. J. Food Sci. 2007, 73, S89–S94. DOI:10.1111/j.1750-3841.2007.00609.x.
  • Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7, 452–490. DOI:10.1007/s12393-014-9106-7.
  • McClements, D. J. Recent Progress in Hydrogel Delivery Systems for Improving Nutraceutical Bioavailability. Food Hydrocolloid. 2017, 68, 238–245. DOI:10.1016/j.foodhyd.2016.05.037.
  • Babaei, J.; Mohammadian, M.; Madadlou, A. Gelatin as Texture Modifier and Porogen in Egg White Hydrogel. Food Chem. 2019, 270, 189–195. DOI:10.1016/j.foodchem.2018.07.109.
  • Anal, A. K.; Shrestha, S.; Sadiq, M. B. Biopolymeric-Based Emulsions and Their Effects during Processing, Digestibility and Bioaccessibility of Bioactive Compounds in Food Systems. Food Hydrocolloid 2019, 87, 691–702. DOI:10.1016/j.foodhyd.2018.09.008.
  • McClements, D. J. Recent Developments in Encapsulation and Release of Functional Food Ingredients: delivery by Design. Curr. Opin. Food Sci. 2018, 23, 80–84. DOI:10.1016/j.cofs.2018.06.008.
  • Wang, M.; Doi, T.; McClements, D. J. Encapsulation and Controlled Release of Hydrophobic Flavors Using Biopolymer-Based Microgel Delivery Systems: Sustained Release of Garlic Flavor During Simulated Cooking. Food Res. Int. 2019, 119, 6–14. DOI:10.1016/j.foodres.2019.01.042.
  • Zhang, Z.; Zhang, R.; Decker, E. A.; McClements, D. J. Development of Food-Grade Filled Hydrogels for Oral Delivery of Lipophilic Active Ingredients: pH-Triggered Release. Food Hydrocolloid. 2015, 44, 345–352. DOI:10.1016/j.foodhyd.2014.10.002.
  • Zhang, Z. P.; Zhang, R. J.; Zou, L. Q.; McClements, D. J. Protein Encapsulation in Alginate Hydrogel Beads: Effect of pH on Microgel Stability, Protein Retention and Protein Release. Food Hydrocolloid. 2016, 58, 308–315. DOI:10.1016/j.foodhyd.2016.03.015.
  • Eratte, D.; McKnight, S.; Gengenbach, T. R.; Dowling, K.; Barrow, C. J.; Adhikari, B. P. Co-Encapsulation and Characterisation of Omega-3 Fatty Acids and Probiotic Bacteria in Whey Protein Isolate-Gum Arabic Complex Coacervates. J. Funct. Foods 2015, 19, 882–892. DOI:10.1016/j.jff.2015.01.037.
  • Antigo, J. L. D.; Bergamasco, R. D.; Madrona, G. S. Effect of pH on the Stability of Red Beet Extract (Beta vulgaris L.) Microcapsules Produced by Spray Drying or Freeze Drying. Food Sci. Technol. 2017, 38, 72–77. DOI:10.1590/1678-457x.34316.
  • Alehosseini, A.; del Pulgar, E.-M. G.; Fabra, M. J.; Gómez-Mascaraque, L. G.; Benítez-Páez, A.; Sarabi-Jamab, M.; Ghorani, B.; Lopez-Rubio, A. Agarose-Based Freeze-Dried Capsules Prepared by the Oil-Induced Biphasic Hydrogel Particle Formation Approach for the Protection of Sensitive Probiotic Bacteria. Food Hydrocolloid. 2019, 87, 487–496. DOI:10.1016/j.foodhyd.2018.08.032.
  • Rojas, V. M.; Marconi, L. F. d. C. B.; Guimarães-Inácio, A.; Leimann, F. V.; Tanamati, A.; Gozzo, Â. M.; Fuchs, R. H. B.; Barreiro, M. F.; Barros, L.; Ferreira, I. C. F. R.; et al. Formulation of Mayonnaises Containing PUFAs by the Addition of Microencapsulated Chia Seeds, Pumpkin Seeds and Baru Oils. Food Chem. 2019, 274, 220–227. DOI:10.1016/j.foodchem.2018.09.015.
  • Abubakr, N.; Lin, S. X.; Chen, X. D. Effects of Drying Methods on the Release Kinetics of Vitamin B12 in Calcium Alginate Beads. Dry. Technol. 2009, 27, 1258–1265. DOI:10.1080/07373930903267732.
  • Cheng, J.; Ma, Y.; Li, X.; Yan, T.; Cui, J. Effects of Milk Protein–Polysaccharide Interactions on the Stability of Ice Cream Mix Model Systems. Food Hydrocolloid. 2015, 45, 327–336. DOI:10.1016/j.foodhyd.2014.11.027.
  • Corrochano, A. R.; Buckin, V.; Kelly, P. M.; Giblin, L. Invited Review: Whey Proteins as Antioxidants and Promoters of Cellular Antioxidant Pathways. J. Dairy Sci. 2018, 101, 4747–4761. DOI:10.3168/jds.2017-13618.
  • Nijdam, J.; Langrish, T. An Investigation of Milk Powders Produced by a Laboratory-Scale Spray Dryer. Dry. Technol. 2005, 23, 1043–1056. DOI:10.1081/DRT-200060208.
  • Kim, E. H.-J.; Dong Chen, X.; Pearce, D. On the Mechanisms of Surface Formation and the Surface Compositions of Industrial Milk Powders. Dry. Technol. 2003, 21, 265–278. DOI:10.1081/DRT-120017747.
  • Augustin, M. A.; Hemar, Y. Nano- and Micro-Structured Assemblies for Encapsulation of Food Ingredients. Chem. Soc. Rev. 2009, 38, 902–912. DOI:10.1039/B801739P.
  • Di Giorgio, L.; Salgado, P. R.; Mauri, A. N. Encapsulation of Fish Oil in Soybean Protein Particles by Emulsification and Spray Drying. Food Hydrocolloid. 2019, 87, 891–901. DOI:10.1016/j.foodhyd.2018.09.024.
  • Jafari, S. M.; He, Y.; Bhandari, B. Encapsulation of Nanoparticles of d-Limonene by Spray Drying: role of Emulsifiers and Emulsifying Techniques. Dry. Technol. 2007, 25, 1069–1079. DOI:10.1080/07373930701396758.
  • Tonon, R. V.; Pedro, R. B.; Grosso, C. R.; Hubinger, M. D. Microencapsulation of Flaxseed Oil by Spray Drying: Effect of Oil Load and Type of Wall Material. Dry. Technol. 2012, 30, 1491–1501. DOI:10.1080/07373937.2012.696227.
  • Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D. J. Formation and Stabilization of Nanoemulsion-Based Vitamin E Delivery Systems Using Natural Biopolymers: Whey Protein Isolate and Gum Arabic. Food Chem. 2015, 188, 256–263. DOI:10.1016/j.foodchem.2015.05.005.
  • Carneiro, H. C.; Tonon, R. V.; Grosso, C. R.; Hubinger, M. D. Encapsulation Efficiency and Oxidative Stability of Flaxseed Oil Microencapsulated by Spray Drying Using Different Combinations of Wall Materials. J. Food Eng. 2013, 115, 443–451. DOI:10.1016/j.jfoodeng.2012.03.033.
  • Alves, S. F.; Borges, L. L.; dos Santos, T. O.; de Paula, J. R.; Conceição, E. C.; Bara, M. T. Microencapsulation of Essential Oil from Fruits of Pterodon emarginatus Using Gum Arabic and Maltodextrin as Wall Materials: Composition and Stability. Dry. Technol. 2014, 32, 96–105. DOI:10.1080/07373937.2013.816315.
  • Feng, C.; Yuan, X.; Chu, K.; Zhang, H.; Ji, W.; Rui, M. Preparation and Optimization of Poly (Lactic Acid) Nanoparticles Loaded with Fisetin to Improve anti-Cancer Therapy. Int. J. Biol. Macromol. 2019, 125, 700–710. DOI:10.1016/j.ijbiomac.2018.12.003.
  • Mohammadi, A.; Jafari, S. M.; Assadpour, E.; Faridi Esfanjani, A. Nano-Encapsulation of Olive Leaf Phenolic Compounds through WPC–Pectin Complexes and Evaluating Their Release Rate. Int. J. Biol. Macromol. 2016, 82, 816–822. DOI:10.1016/j.ijbiomac.2015.10.025.
  • Chevalier, L. M.; Rioux, L. E.; Angers, P.; Turgeon, S. L. Study of the Interactions between Pectin in a Blueberry Puree and Whey Proteins: Functionality and Application. Food Hydrocolloid. 2019, 87, 61–70. DOI:10.1016/j.foodhyd.2018.07.038.
  • Bowey, K.; Swift, B. E.; Flynn, L. E.; Neufeld, R. J. Characterization of Biologically Active Insulin-Loaded Alginate Microparticles Prepared by Spray Drying. Drug Dev. Ind. Pharm. 2013, 39, 457–465. DOI:10.3109/03639045.2012.662985.
  • Augustin, M. A.; Oliver, C. M. Use of Milk Proteins for Encapsulation of Food Ingredients. In Microencapsulation in the Food Industry: A Practical Implementation Guide. Academic Press: New York, NY, 2014; pp. 211–226. DOI:10.1016/B978-0-12-404568-2.00019-4.
  • Guerin, J.; Petit, J.; Burgain, J.; Borges, F.; Bhandari, B.; Perroud, C.; Desobry, S.; Scher, J.; Gaiani, C. Lactobacillus rhamnosus GG Encapsulation by Spray-Drying: Milk Proteins Clotting Control to Produce Innovative Matrices. J. Food Eng. 2017, 193, 10–19. DOI:10.1016/j.jfoodeng.2016.08.008.
  • Jansen-Alves, C.; Maia, D. S.; Krumreich, F. D.; Crizel-Cardoso, M. M.; Fioravante, J. B.; da Silva, W. P.; Borges, C. D.; Zambiazi, R. C. J. Propolis Microparticles Produced with Pea Protein: Characterization and Evaluation of Antioxidant and Antimicrobial Activities. Food Hydrocolloid. 2019, 87, 703–711. DOI:10.1016/j.foodhyd.2018.09.004.
  • Dickinson, E. Hydrocolloids as Emulsifiers and Emulsion Stabilizers. Food Hydrocolloid. 2009, 23, 1473–1482. DOI:10.1016/j.foodhyd.2008.08.005.
  • Würth, R.; Foerst, P.; Kulozik, U. J. Effects of Skim Milk Concentrate Dry Matter and Spray Drying Air Temperature on Formation of Capsules with Varying Particle Size and the Survival Microbial Cultures in a Microcapsule Matrix. Dry. Technol. 2018, 36, 93–99. DOI:10.1080/07373937.2017.1301952.
  • Xu, X.; Luo, L.; Liu, C.; McClements, D. J. Utilization of Anionic Polysaccharides to Improve the Stability of Rice Glutelin Emulsions: Impact of Polysaccharide Type, pH, Salt, and Temperature. Food Hydrocolloid. 2017, 64, 112–122. DOI:10.1016/j.foodhyd.2016.11.005.
  • Khalesi, H.; Emadzadeh, B.; Kadkhodaee, R.; Fang, Y. Whey Protein Isolate–Persian Gum Interaction at Neutral pH. Food Hydrocolloid. 2016, 59, 45–49. DOI:10.1016/j.foodhyd.2015.10.017.
  • Guo, J.; Zhou, Q.; Liu, Y. C.; Yang, X. Q.; Wang, J. M.; Yin, S. W.; Qi, J. R. Preparation of Soy Protein-Based Microgel Particles Using a Hydrogel Homogenizing Strategy and Their Interfacial Properties. Food Hydrocolloid. 2016, 58, 324–334. DOI:10.1016/j.foodhyd.2016.03.008.
  • Matalanis, A.; Jones, O. G.; McClements, D. J. Structured Biopolymer-Based Delivery Systems for Encapsulation, Protection, and Release of Lipophilic Compounds. Food Hydrocolloid. 2011, 25, 1865–1880. DOI:10.1016/j.foodhyd.2011.04.014.
  • Xie, Y.-L.; Zhou, H.-M.; Liang, X.-H.; He, B.-S.; Han, X.-X. Study on the Morphology, Particle Size and Thermal Properties of Vitamin a Microencapsulated by Starch Octenylsucciniate. Agr. Sci. China 2010, 9, 1058–1064. DOI:10.1016/S1671-2927(09)60190-5.
  • Idham, Z.; Muhamad, I. I.; Sarmidi, M. R. Degradation Kinetics and Color Stability of Spray‐Dried Encapsulated Anthocyanins from Hibiscus sabdariffa L. J. Food Process. Eng. 2012, 35, 522–542. DOI:10.1111/j.1745-4530.2010.00605.x.
  • Fernandes, R. V. D.; Borges, S. V.; Botrel, D. A.; de Oliveira, C. R. Physical and Chemical Properties of Encapsulated Rosemary Essential Oil by Spray Drying Using Whey Protein–Inulin Blends as Carriers. Int. J. Food Sci. Technol. 2014, 49, 1522–1529. DOI:10.1111/ijfs.12449.
  • Ferrari, C. C.; Germer, S. P. M.; Alvim, I. D.; Vissotto, F. Z.; de Aguirre, J. M. Influence of Carrier Agents on the Physicochemical Properties of Blackberry Powder Produced by Spray Drying. Int. J. Food Sci. Technol. 2012, 47, 1237–1245. DOI:10.1111/j.1365-2621.2012.02964.x.
  • Desobry, S. A.; Netto, F. M.; Labuza, T. P. Comparison of Spray‐Drying, Drum‐Drying and Freeze‐Drying for β‐Carotene Encapsulation and Preservation. J. Food Sci. 1997, 62, 1158–1162. DOI:10.1111/j.1365-2621.1997.tb12235.x.
  • Adhikari, B.; Howes, T.; Lecomte, D.; Bhandari, B. J. A Glass Transition Temperature Approach for the Prediction of the Surface Stickiness of a Drying Droplet during Spray Drying. Powder Technol. 2005, 149, 168–179. DOI:10.1016/j.powtec.2004.11.007.
  • Harguindeguy, M.; Fissore, D. On the Effects of Freeze-Drying Processes on the Nutritional Properties of Foodstuff: A Review. Dry. Technol. 2019, 1–23. DOI:10.1080/07373937.2019.1599905.
  • Alves, N. N.; Messaoud, G. B.; Desobry, S.; Costa, J. M. C.; Rodrigues, S. Effect of Drying Technique and Feed Flow Rate on Bacterial Survival and Physicochemical Properties of a Non-Dairy Fermented Probiotic Juice Powder. J. Food Eng. 2016, 189, 45–54. DOI:10.1016/j.jfoodeng.2016.05.023.
  • Celli, G. B.; Dibazar, R.; Ghanem, A.; Brooks, M. S. L. Degradation Kinetics of Anthocyanins in Freeze-Dried Microencapsulates from Lowbush Blueberries (Vaccinium angustifolium Aiton) and Prediction of Shelf-Life. Dry. Technol. 2016, 34, 1175–1184. DOI:10.1080/07373937.2015.1099546.
  • Aghbashlo, M.; Mobli, H.; Madadlou, A.; Rafiee, S. The Correlation of Wall Material Composition with Flow Characteristics and Encapsulation Behavior of Fish Oil Emulsion. Food Res. Int. 2012, 49, 379–388. DOI:10.1016/j.foodres.2012.07.031.
  • Fang, Z.; Wang, R.; Bhandari, B. Effects of Type and Concentration of Proteins on the Recovery of Spray-Dried Sucrose Powder. Dry. Technol. 2013, 31, 1643–1652. DOI:10.1080/07373937.2013.770011.
  • Fazaeli, M.; Emam-Djomeh, Z.; Ashtari, A. K.; Omid, M. Effect of Spray Drying Conditions and Feed Composition on the Physical Properties of Black Mulberry Juice Powder. Food Bioproduct. Process. 2012, 90, 667–675. DOI:10.1016/j.fbp.2012.04.006.
  • Bejrapha, P.; Min, S.-G.; Surassmo, S.; Choi, M.-J. Physicothermal Properties of Freeze-Dried Fish Oil Nanocapsules Frozen Under Different Conditions. Dry. Technol. 2010, 28, 481–489. DOI:10.1080/07373931003613684.
  • Choi, M.-J.; Hong, G.-P.; Briançon, S.; Fessi, H.; Lee, M.-Y.; Min, S.-G. Effect of a High-Pressure-Induced Freezing Process on the Stability of Freeze-Dried Nanocapsules. Dry. Technol. 2008, 26, 1199–1207. DOI:10.1080/07373930802306979.
  • Nakagawa, K.; Nagao, H.; Surassmo, S.; Min, S. G.; Choi, M.-J. Stabilization of Microcapsules Using a Freeze-Dried Gelatin Matrix: Aqueous Redispersibility and the Ingredient Activity. Dry. Technol. 2012, 30, 416–424. DOI:10.1080/07373937.2011.645980.
  • Maity, T.; Saxena, A.; Raju, P. Use of Hydrocolloids as Cryoprotectant for Frozen Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 420–435. DOI:10.1080/10408398.2016.1182892.
  • Comunian, T. A.; Favaro-Trindade, C. S. Microencapsulation Using Biopolymers as an Alternative to Produce Food Enhanced with Phytosterols and Omega-3 Fatty Acids: A Review. Food Hydrocolloid. 2016, 61, 442–457. DOI:10.1016/j.foodhyd.2016.06.003.
  • Premi, M.; Sharma, H. Effect of Different Combinations of Maltodextrin, Gum Arabic and Whey Protein Concentrate on the Encapsulation Behavior and Oxidative Stability of Spray Dried Drumstick (Moringa oleifera) Oil. Int. J. Biol. Macromol. 2017, 105, 1232–1240. DOI:10.1016/j.ijbiomac.2017.07.160.
  • Chuyen, H. V.; Roach, P. D.; Golding, J. B.; Parks, S. E.; Nguyen, M. H. Encapsulation of Carotenoid-Rich Oil from Gac Peel: Optimisation of the Encapsulating Process Using a Spray Drier and the Storage Stability of Encapsulated Powder. Powder Technol. 2019, 344, 373–379. DOI:10.1016/j.powtec.2018.12.012.
  • Hoyos-Leyva, J.; Bello-Perez, L. A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Potential of Taro Starch Spherical Aggregates as Wall Material for Spray Drying Microencapsulation: Functional, Physical and Thermal Properties. Int. J. Biol. Macromol. 2018, 120, 237–244. DOI:10.1016/j.ijbiomac.2018.08.093.
  • Zhang, Z. H.; Peng, H. D.; Ma, H. L.; Zeng, X. A. Effect of Inlet Air Drying Temperatures on the Physicochemical Properties and Antioxidant Activity of Whey Protein Isolate-Kale Leaves Chlorophyll (WPI-CH) Microcapsules. J. Food Eng. 2019, 245, 149–156. DOI:10.1016/j.jfoodeng.2018.10.011.
  • Walton, D. J. The Morphology of Spray-Dried Particles a Qualitative View. Dry. Technol. 2000, 18, 1943–1986. DOI:10.1080/07373930008917822.
  • Kadota, K.; Yanagawa, Y.; Tachikawa, T.; Deki, Y.; Uchiyama, H.; Shirakawa, Y.; Tozuka, Y. Development of Porous Particles Using Dextran as an Excipient for Enhanced Deep Lung Delivery of Rifampicin. Int. J. Pharm. 2019, 555, 280–290. DOI:10.1016/j.ijpharm.2018.11.055.
  • Gursul, S.; Karabulut, I.; Durmaz, G. Antioxidant Efficacy of Thymol and Carvacrol in Microencapsulated Walnut Oil Triacylglycerols. Food. Chem. 2019, 278, 805–810. DOI:10.1016/j.foodchem.2018.11.134.
  • Oikonomopoulou, V. P.; Krokida, M. K. Novel Aspects of Formation of Food Structure during Drying. Dry. Technol. 2013, 31, 990–1007. DOI:10.1080/07373937.2013.771186.
  • Borgognoni, C. F.; Polakiewicz, B.; Pitombo, R. N. D. M. Moisture Sorption Isotherm Characteristics of Freeze-Dried d-Limonene Emulsions in Modified Chitosan and Maltodextrin. Dry. Technol. 2008, 26, 956–962. DOI:10.1080/07373930802142937.
  • Li, X.; Anton, N.; Arpagaus, C.; Belleteix, F.; Vandamme, T. F. Nanoparticles by Spray Drying Using Innovative New Technology: The Büchi Nano Spray Dryer B-90. J. Control. Release. 2010, 147, 304–310. DOI:10.1016/j.jconrel.2010.07.113.
  • Domian, E.; Cenkier, J.; Górska, A.; Brynda-Kopytowska, A. Effect of Oil Content and Drying Method on Bulk Properties and Stability of Powdered Emulsions with OSA Starch and Linseed Oil. LWT Food Sci. Technol. 2018, 88, 95–102. DOI:10.1016/j.lwt.2017.09.043.
  • Cano‐Higuita, D.; Malacrida, C.; Telis, V. J. Stability of Curcumin Microencapsulated by Spray and Freeze Drying in Binary and Ternary Matrices of Maltodextrin, Gum Arabic and Modified Starch. J. Food Process. Pres. 2015, 39, 2049–2060. DOI:10.1111/jfpp.12448.
  • Shaikh, J.; Bhosale, R.; Singhal, R. Microencapsulation of Black Pepper Oleoresin. Food Chem. 2006, 94, 105–110. DOI:10.1016/j.foodchem.2004.10.056.
  • Choi, M.; Briancon, S.; Andrieu, J.; Min, S.; Fessi, H. Effect of Freeze-Drying Process Conditions on the Stability of Nanoparticles. Dry. Technol. 2004, 22, 335–346. DOI:10.1081/DRT-120028238.
  • Vaidya, S.; Bhosale, R.; Singhal, R. S. Microencapsulation of Cinnamon Oleoresin by Spray Drying Using Different Wall Materials. Dry. Technol. 2006, 24, 983–992. DOI:10.1080/07373930600776159.
  • Rascón, M. P.; Beristain, C. I.; García, H. S.; Salgado, M. A. Carotenoid Retention and Storage Stability of Spray-Dried Encapsulated Paprika Oleoresin Using Gum Arabic and Soy Protein Isolate as Wall Materials. LWT Food Sci. Technol. 2011, 44, 549–557. DOI:10.1016/j.lwt.2010.08.021.
  • Behboudi-Jobbehdar, S.; Soukoulis, C.; Yonekura, L.; Fisk, I. Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L. acidophilus NCIMB 701748. Dry. Technol. 2013, 31, 1274–1283. DOI:10.1080/07373937.2013.788509.
  • Koç, M.; Koç, B.; Yilmazer, M. S.; Ertekin, F. K.; Susyal, G.; Bağdatlıoğlu, N. Physicochemical Characterization of Whole Egg Powder Microencapsulated by Spray Drying. Dry. Technol. 2011, 29, 780–788. DOI:10.1080/07373937.2010.538820.
  • Cao, X. H.; Zhang, M.; Qian, H.; Mujumdar, A. S.; Wang, Z. S. Physicochemical and Nutraceutical Properties of Barley Grass Powder Microencapsulated by Spray Drying. Dry. Technol. 2017, 35, 1358–1367. DOI:10.1080/07373937.2017.1332074.
  • Adamiec, J.; Borompichaichartkul, C.; Srzednicki, G.; Panket, W.; Piriyapunsakul, S.; Zhao, J. Microencapsulation of Kaffir Lime Oil and Its Functional Properties. Dry. Technol. 2012, 30(9), 914–920, DOI:10.1080/07373937.2012.666777.
  • Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour Encapsulation and Controlled Release—A Review. Int. J. Food Sci. Technol. 2006, 41, 1–21. DOI:10.1111/j.1365-2621.2005.00980.x.
  • Minemoto, Y.; Adachi, S.; Matsuno, R. Comparison of Oxidation of Methyl Linoleate Encapsulated with Gum Arabic by Hot-Air-Drying and Freeze-Drying. J. Agric. Food Chem. 1997, 45, 4530–4534. DOI:10.1021/jf970465h.
  • McClements, D. J. Designing Biopolymer Microgels to Encapsulate, Protect and Deliver Bioactive Components: Physicochemical Aspects. Adv. Colloid Interface Sci. 2017, 240, 31–59. DOI:10.1016/j.cis.2016.12.005.
  • Chranioti, C.; Tzia, C. Arabic Gum Mixtures as Encapsulating Agents of Freeze-Dried Fennel Oleoresin Products. Food Bioprocess. Technol. 2014, 7, 1057–1065. DOI:10.1007/s11947-013-1074-z.
  • Hosseini, S. M. H.; Emam-Djomeh, Z.; Sabatino, P.; Van der Meeren, P. Nanocomplexes Arising from Protein-Polysaccharide Electrostatic Interaction as a Promising Carrier for Nutraceutical Compounds. Food Hydrocolloid. 2015, 50, 16–26. DOI:10.1016/j.foodhyd.2015.04.006.
  • Turan, D.; Gibis, M.; Gunes, G.; Baier, S. K.; Weiss, J. The Impact of the Molecular Weight of Dextran on Formation of Whey Protein Isolate (WPI)-Dextran Conjugates in Fibers Produced by Needleless Electrospinning after Annealing. Food Funct. 2018, 9, 2193–2200. DOI:10.1039/C7FO02041D.
  • Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent Advances in Emulsion-Based Delivery Approaches for Curcumin: From Encapsulation to Bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. DOI:10.1016/j.tifs.2017.11.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.