551
Views
9
CrossRef citations to date
0
Altmetric
Articles

Recent advances in micro-level experimental investigation in food drying technology

, &
Pages 557-576 | Received 12 Aug 2019, Accepted 14 Aug 2019, Published online: 30 Aug 2019

References

  • Duc Pham, N.; Khan, M. I. H.; Joardder, M.; Rahman, M.; Mahiuddin, M.; Abesinghe, A. N.; Karim, M. Quality of Plant-Based Food Materials and Its Prediction during Intermittent Drying. Crit. Rev. Food Sci. Nutr. 2019, 59, 1197–1211. DOI: 10.1080/10408398.2017.1399103.
  • Pham, N. D.; Martens, W.; Karim, M.; Joardder, M. Quality of Heat-Sensitive Food Materials in Intermittent Microwave Convective Drying. Food Nutr Res. 2018, 62, 1292. DOI: 10.29219/fnr.v62.1292.
  • Khan, M. I. H.; Farrell, T.; Nagy, S.; Karim, M. Fundamental Understanding of Cellular Water Transport Process in Bio-Food Material during Drying. Sci. Rep. 2018, 8, 1–12. DOI: 10.1038/s41598-018-33159-7.
  • Khan, M. I. H.; Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Porous Media Modelling: A Novel Approach to Predicting Food Processing Performance. Crit. Rev. Food Sci. Nutr. 2018, 58, 528–546. DOI: 10.1080/10408398.2016.1197881.
  • Joardder, M. U.; Kumar, C.; Karim, M. Food Structure: Its Formation and Relationships with Other Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1190–1205. DOI: 10.1080/10408398.2014.971354.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Investigation of Bound and Free Water in Plant-Based Food Material Using NMR T2 Relaxometry. Innovat. Food Sci. Emerg. Technol. 2016, 38, 252–261. DOI: 10.1016/j.ifset.2016.10.015.
  • Konstankiewicz, K.; Czachor, H.; Gancarz, M.; Król, A.; Pawlak, K.; Zdunek, A. Cell Structural Parameters of Potato Tuber Tissue. Int. Agrophys. 2002, 16, 119–128.
  • Rahman, M.; Joardder, M. U.; Khan, M.; Pham, N. D.; Karim, M. Multi-Scale Model of Food Drying: Current Status and Challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 858–876. DOI: 10.1080/10408398.2016.1227299.
  • Rahman, M.; Gu, Y.; Karim, M. Development of Realistic Food Microstructure considering the Structural Heterogeneity of Cells and Intercellular Space. Food Struct. 2018, 15, 9–16. DOI: 10.1016/j.foostr.2018.01.002.
  • Kumar, C.; Joardder, M. U.; Farrell, T. W.; Millar, G. J.; Karim, M. A. A Porous Media Transport Model for Apple Drying. Biosyst. Eng. 2018, 176, 12–25. DOI: 10.1016/j.biosystemseng.2018.06.021.
  • Karim, M. A.; Hawlader, M. Mathematical Modelling and Experimental Investigation of Tropical Fruits Drying. Int. J. Heat Mass Transf. 2005, 48, 4914–4925. DOI: 10.1016/j.ijheatmasstransfer.2005.04.035.
  • Karim, M. A.; Hawlader, M. N. A. Drying Characteristics of Banana: theoretical Modelling and Experimental Validation. J. Food Eng. 2005, 70, 35–45. DOI: 10.1016/j.jfoodeng.2004.09.010.
  • Khan, M.; Kumar, C.; Joardder, M.; Karim, M. Determination of Appropriate Effective Diffusivity for Different Food Materials. Dry. Technol. 2017, 35, 335–346. DOI: 10.1080/07373937.2016.1170700.
  • Chua, K.; Mujumdar, A.; Hawlader, M.; Chou, S.; Ho, J. Convective Drying of Agricultural Products. Effect of Continuous and Stepwise Change in Drying Air Temperature. Dry. Technol. 2001, 19, 1949–1960. DOI: 10.1081/DRT-100107282.
  • Kumar, C.; Joardder, M. U. H.; Karim, A.; Millar, G. J.; Amin, Z. Temperature Redistribution Modelling during Intermittent Microwave Convective Heating. Procedia Eng. 2014, 90, 544–549. DOI: 10.1016/j.proeng.2014.11.770.
  • Kumar, C.; Karim, M. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. DOI: 10.1080/10408398.2017.1373269.
  • Kumar, C.; Karim, M. A.; Joardder, M. U. H. Intermittent Drying of Food Products: A Critical Review. J. Food Eng. 2014, 121, 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.
  • Kumar, C.; Joardder, M.; Farrell, T.; Millar, G. J.; Karim, M. Mathematical Model for Intermittent Microwave Convective Drying of Food Materials. Dry. Technol. 2016, 34, 962–973. DOI: 10.1080/07373937.2015.1087408.
  • Kumar, C.; Joardder, M.; Farrell, T. W.; Karim, M. Investigation of Intermittent Microwave Convective Drying (IMCD) of Food Materials by a Coupled 3D Electromagnetics and Multiphase Model. Dry. Technol. 2018, 36, 736–750. DOI: 10.1080/07373937.2017.1354874.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Karim, M. A. Multiphase Porous Media Model for Intermittent Microwave Convective Drying (IMCD) of Food. Int. J. Thermal Sci. 2016, 104, 304–314. DOI: 10.1016/j.ijthermalsci.2016.01.018.
  • Aguilera, J. M. Why Food Microstructure? J. Food Eng. 2005, 67, 3–11. DOI: 10.1016/j.jfoodeng.2004.05.050.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M.; Karim, M. Shrinkage of Food Materials during Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Safety 2018, 17, 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Joardder, M. U.; Brown, R. J.; Kumar, C.; Karim, M. Effect of Cell Wall Properties on Porosity and Shrinkage of Dried Apple. Int. J. Food Prop. 2015, 18, 2327–2337. DOI: 10.1080/10942912.2014.980945.
  • Joardder, M. U.; Kumar, C.; Karim, M. Multiphase Transfer Model for Intermittent Microwave-Convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiphas Flow 2017, 95, 101–119. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Joardder, M. U.; Kumar, C.; Karim, M. Prediction of Porosity of Food Materials during Drying: Current Challenges and Directions. Crit. Rev. Food Sci. Nutr. 2018, 58, 2896–2907. DOI: 10.1080/10408398.2017.1345852.
  • Joardder, M. U.; Karim, M. Development of a Porosity Prediction Model Based on Shrinkage Velocity and Glass Transition Temperature. Dry. Technol. 2019, 1–17. DOI: 10.1080/07373937.2018.1555540.
  • Welsh, Z.; Simpson, M. J.; Khan, M. I. H.; Karim, M. A. Multiscale Modeling for Food Drying: State of the Art. Compr. Rev. Food Sci. Food Safety 2018, 17, 1293–1308. DOI: 10.1111/1541-4337.12380.
  • Khan, M. I. H. Fundamental understanding of cellular water distribution and transport in plant-based food material during drying (Doctoral dissertation, Queensland University of Technology), 2018.
  • Rahman, M.; Kumar, C.; Joardder, M. U.; Karim, M. A Micro-Level Transport Model for Plant-Based Food Materials During Drying. Chem. Eng. Sci. 2018, 187, 1–15. DOI: 10.1016/j.ces.2018.04.060.
  • Khan, M. I. H.; Karim, M. Cellular Water Distribution, Transport, and Its Investigation Methods for Plant-Based Food Material. Food Res. Int. 2017, 99, 1–14. DOI: 10.1016/j.foodres.2017.06.037.
  • Khan, M. I. H.; Wellard, R. M.; Mahiuddin, M.; Karim, M. A. Cellular Level Water Distribution and Its Investigation Techniques. In Intermittent and Nonstationary Drying Technologies: Principles and Applications, Karim, A., Law, C. L., Eds.; CRC Press: Boca Raton, FL, 2017, 193–210.
  • Kerch, G.; Glonin, A.; Zicans, J.; Meri, R. M. A DSC Study of the Effect of Ascorbic Acid on Bound Water Content and Distribution in Chitosan-Enriched Bread Rolls during Storage. J. Therm. Anal. Calorim. 2012, 108, 73–78. DOI: 10.1007/s10973-011-1485-x.
  • Goñi, O.; Fernandez-Caballero, C.; Sanchez-Ballesta, M. T.; Escribano, M. I.; Merodio, C. Water Status and Quality Improvement in High-CO2 Treated Table Grapes. Food Chem. 2011, 128, 34–39. DOI: 10.1016/j.foodchem.2011.02.073.
  • Halder, A.; Datta, A. K.; Spanswick, R. M. Water Transport in Cellular Tissues During Thermal Processing. AIChE J. 2011, 57, 2574–2588. DOI: 10.1002/aic.12465.
  • Silva, VMd.; Silva, L. A.; Andrade, JBd.; Veloso, M. C.; Santos, G. V. Determination of Moisture Content and Water Activity in Algae and Fish by Thermoanalytical Techniques. Quím. Nova 2008, 31, 901–905. DOI: 10.1590/S0100-40422008000400030.
  • Rahman, M. M.; Joardder, M. U. H.; Karim, A. Non-Destructive Investigation of Cellular Level Moisture Distribution and Morphological Changes During Drying of a Plant-Based Food Material. Biosyst. Eng. 2018, 169, 126–138. DOI: 10.1016/j.biosystemseng.2018.02.007.
  • Rolland Du Roscoat, S.; Decain, M.; Thibault, X.; Geindreau, C.; Bloch, J. F. Estimation of Microstructural Properties from Synchrotron X-Ray Microtomography and Determination of the REV in Paper Materials. Acta Mater. 2007, 55, 2841–2850. DOI: 10.1016/j.actamat.2006.11.050.
  • McCarthy, M. J. Magnetic Resonance Imaging in Foods. Springer Science & Business Media: Berlin, Germany, 2012.
  • Kuo, J. Electron Microscopy: methods and Protocols, Vol. 369. Springer Science & Business Media: Berlin, Germany, 2007.
  • Kirby, A. R.; Gunning, A. P.; Waldron, K. W.; Morris, V. J.; Ng, A. Visualization of Plant Cell Walls by Atomic Force Microscopy. Biophys. J. 1996, 70, 1138–1143. DOI: 10.1016/S0006-3495(96)79708-4.
  • Autio, K.; Salmenkallio-Marttila, M. Light Microscopic Investigations of Cereal Grains, Doughs and Breads. Food Sci. Technol. 2001, 34, 18–22. DOI: 10.1006/fstl.2000.0725.
  • Nicolai, B. M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K. I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biol. Technol. 2007, 46, 99–118. DOI: 10.1016/j.postharvbio.2007.06.024.
  • Nicolaï, B. M.; Defraeye, T.; De Ketelaere, B.; Herremans, E.; Hertog, M. L. A. T. M.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive Measurement of Fruit and Vegetable Quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312. DOI: 10.1146/annurev-food-030713-092410.
  • Mujumdar, A. S.; Zhonghua, W. Thermal Drying Technologies—Cost-Effective Innovation Aided by Mathematical Modeling Approach. Dry. Technol. 2007, 26, 145–153. DOI: 10.1080/07373930701812606.
  • Wang, Y.; Kharaghani, A.; Metzger, T.; Tsotsas, E. Pore Network Drying Model for Particle Aggregates: assessment by X-Ray Microtomography. Dry. Technol. 2012, 30, 1800–1809. DOI: 10.1080/07373937.2012.713422.
  • Mendoza, F.; Verboven, P.; Mebatsion, H. K.; Kerckhofs, G.; Wevers, M.; Nicolaï, B. Three-Dimensional Pore Space Quantification of Apple Tissue Using X-Ray Computed Microtomography. Planta 2007, 226, 559–570. DOI: 10.1007/s00425-007-0504-4.
  • Herremans, E.; Verboven, P.; Verlinden, B. E.; Cantre, D.; Abera, M.; Wevers, M.; Nicolaï, B. M. Automatic Analysis of the 3-D Microstructure of Fruit Parenchyma Tissue Using X-Ray micro-CT Explains Differences in Aeration. BMC Plant Biol. 2015, 15, 264. DOI: 10.1186/s12870-015-0650-y.
  • Verboven, P.; Kerckhofs, G.; Mebatsion, H. K.; Ho, Q. T.; Temst, K.; Wevers, M.; Cloetens, P.; Nicolaï, B. M. Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-Ray Computed Tomography. Plant Physiol. 2008, 147, 518–527. DOI: 10.1104/pp.108.118935.
  • Léonard, A.; Blacher, S.; Marchot, P.; Pirard, J.-P.; Crine, M. Measurement of Shrinkage and Cracks Associated to Convective Drying of Soft Materials by X-Ray Microtomography. Dry. Technol. 2004, 22, 1695–1708. DOI: 10.1081/DRT-200025629.
  • Cantre, D.; Herremans, E.; Verboven, P.; Ampofo-Asiama, J.; Nicolaï, B. Characterization of the 3-D Microstructure of Mango (Mangifera indica L. cv. Carabao) during Ripening Using X-Ray Computed Microtomography. Innovat. Food Sci. Emerg. Technol. 2014, 24, 28–39. DOI: 10.1016/j.ifset.2013.12.008.
  • Voda, A.; Homan, N.; Witek, M.; Duijster, A.; van Dalen, G.; van der Sman, R.; Nijsse, J.; van Vliet, L.; Van As, H.; van Duynhoven, J. The Impact of Freeze-Drying on Microstructure and Rehydration Properties of Carrot. Food Res. Int. 2012, 49, 687–693. DOI: 10.1016/j.foodres.2012.08.019.
  • Yang, L.; Liu, H.; Cai, Y.; Wu, Z. A Novel Method of Studying the Collapsed Cell of Eucalyptus Wood Using X-Ray CT Scanning. Dry. Technol. 2019, 37, 1597–1604. DOI: 10.1080/07373937.2018.1519572.
  • Verboven, P.; Nemeth, A.; Abera, M. K.; Bongaers, E.; Daelemans, D.; Estrade, P.; Herremans, E.; Hertog, M.; Saeys, W.; Vanstreels, E.; et al. Optical Coherence Tomography Visualizes Microstructure of Apple Peel. Postharvest Biol. Technol. 2013, 78, 123–132. DOI: 10.1016/j.postharvbio.2012.12.020.
  • Cantre, D.; East, A.; Verboven, P.; Trejo Araya, X.; Herremans, E.; Nicolaï, B. M.; Pranamornkith, T.; Loh, M.; Mowat, A.; Heyes, J. Microstructural Characterisation of Commercial Kiwifruit Cultivars Using X-Ray Micro Computed Tomography. Postharvest Biol. Technol. 2014, 92, 79–86. DOI: 10.1016/j.postharvbio.2014.01.012.
  • Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave-and Ultrasound-Assisted Convective Drying of Raspberries: Drying Kinetics and Microstructural Changes. Dry. Technol. 2019, 37, 1–12. DOI: 10.1080/07373937.2018.1433199.
  • Szadzińska, J.; Mierzwa, D.; Pawłowski, A.; Musielak, G.; Pashminehazar, R.; Kharaghani, A. Ultrasound-and Microwave-Assisted Intermittent Drying of Red Beetroot. Dry. Technol. 2019, 1–15. DOI: 10.1080/07373937.2019.1624565.
  • Madiouli, J.; Sghaier, J.; Orteu, J.-J.; Robert, L.; Lecomte, D.; Sammouda, H. Non-Contact Measurement of the Shrinkage and Calculation of Porosity during the Drying of Banana. Dry. Technol. 2011, 29, 1358–1364. DOI: 10.1080/07373937.2011.561460.
  • Du Plessis, A.; Yadroitsev, I.; Yadroitsava, I.; Le Roux, S. G. X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications. 3D Print. Addit. Manuf. 2018, 5, 227–247. DOI: 10.1089/3dp.2018.0060.
  • Van Der Weerd, L.; Claessens, M. M. A. E.; Efdé, C.; Van As, H. Nuclear Magnetic Resonanceimaging of Membrane Permeability Changes in Plants during Osmoticstress. Plant. Cell Environ. 2002, 25, 1539–1549. DOI: 10.1046/j.1365-3040.2002.00934.x.
  • Gambhir, P. N.; Choi, Y. J.; Slaughter, D. C.; Thompson, J. F.; McCarthy, M. J. Proton Spin–Spin Relaxation Time of Peel and Flesh of Navel Orange Varieties Exposed to Freezing Temperature. J. Sci. Food Agric. 2005, 85, 2482–2486. DOI: 10.1002/jsfa.2266.
  • Khan, M. I. H.; Kumar, C.; Karim, M. Mechanistic understanding of cellular level of water in plant-based food material. in AIP Conference Proceedings. 2017. AIP Publishing.
  • Westbrook, C.; K. C. MRI in Practice. 1993., Great Britain: Oxford, Blackwell Scientific.
  • Armspach, J.-P.; Gounot, D.; Rumbach, L.; Chambron, J. In Vivo Determination of Multiexponential T 2 Relaxation in the Brain of Patients with Multiple Sclerosis. Magnetic Resonance Imaging 1991, 9, 107–113. DOI: 10.1016/0730-725X(91)90104-T.
  • Cheng, S.; Li, R.; Yang, H.; Wang, S.; Tan, M. Water Status and Distribution in Shiitake Mushroom and the Effects of Drying on Water Dynamics Assessed by LF-NMR and MRI. Dry. Technol. 2019, 1–10. DOI: 10.1080/07373937.2019.1625364.
  • Cheng, S.; Tang, Y.; Zhang, T.; Song, Y.; Wang, X.; Wang, H.; Wang, H.; Tan, M. Approach for Monitoring the Dynamic States of Water in Shrimp during Drying Process with LF-NMR and MRI. Dry. Technol. 2018, 36, 841–848. DOI: 10.1080/07373937.2017.1357569.
  • Cao, X.; Zhang, M.; Mujumdar, A. S.; Zhong, Q.; Wang, Z. Measurement of Water Mobility and Distribution in Vacuum Microwave-Dried Barley Grass Using Low-Field-NMR. Dry. Technol. 2018, 36, 1892–1899. DOI: 10.1080/07373937.2018.1449753.
  • Kamal, T.; Song, Y.; Tan, Z.; Zhu, B.-W.; Tan, M. Effect of Hot-Air Oven Dehydration Process on Water Dynamics and Microstructure of Apple (Fuji) Cultivar Slices Assessed by LF-NMR and MRI. Dry. Technol. 2019, 1–14. DOI: 10.1080/07373937.2018.1547312.
  • Wei, S.; Tian, B.-Q.; Jia, H.-F.; Zhang, H.-Y.; He, F.; Song, Z.-P. Investigation on Water Distribution and State in Tobacco Leaves with Stalks during Curing by LF-NMR and MRI. Dry. Technol. 2018, 36, 1515–1522. DOI: 10.1080/07373937.2017.1415349.
  • Xu, K.; Lu, J.; Gao, Y.; Wu, Y.; Li, X. Determination of Moisture Content and Moisture Content Profiles in Wood During Drying by Low-Field Nuclear Magnetic Resonance. Dry. Technol. 2017, 35, 1909–1918. DOI: 10.1080/07373937.2017.1291519.
  • Mao, H.; Wang, F.; Mao, F.; Chi, Y.; Lu, S.; Cen, K. Measurement of Water Content and Moisture Distribution in Sludge by 1H Nuclear Magnetic Resonance Spectroscopy. Dry. Technol. 2016, 34, 267–274. DOI: 10.1080/07373937.2015.1047952.
  • Li, H.; Lin, B.; Hong, Y.; Liu, T.; Huang, Z.; Wang, R.; Wang, Z. Assessing the Moisture Migration during Microwave Drying of Coal Using Low-Field Nuclear Magnetic Resonance. Dry. Technol. 2018, 36, 567–577. DOI: 10.1080/07373937.2017.1349136.
  • Li, L.; Zhang, M.; Bhandari, B.; Zhou, L. LF-NMR Online Detection of Water Dynamics in Apple Cubes During Microwave Vacuum Drying. Dry. Technol. 2018, 36, 2006–2015. DOI: 10.1080/07373937.2018.1432643.
  • Cho, B.-K.; Chayaprasert, W.; Stroshine, R. L. Effects of Internal Browning and Watercore on Low Field (5.4 MHz) Proton Magnetic Resonance Measurements of T2 Values of Whole Apples. Postharvest Biol. Technol. 2008, 47, 81–89. DOI: 10.1016/j.postharvbio.2007.05.018.
  • Hills, B. P.; Remigereau, B. NMR Studies of Changes in Subcellular Water Compartmentation in Parenchyma Apple Tissue during Drying and Freezing. Int. J. Food Sci. Technol. 1997, 32, 51–61. DOI: 10.1046/j.1365-2621.1997.00381.x.
  • Gonzalez, M. E.; Barrett, D. M.; McCarthy, M. J.; Vergeldt, F. J.; Gerkema, E.; Matser, A. M.; Van As, H. ¹H-NMR Study of the Impact of High Pressure and Thermal Processing on Cell Membrane Integrity of Onions. J. Food Sci. 2010, 75, E417–25. DOI: 10.1111/j.1750-3841.2010.01766.x.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M.; Karim, M. Experimental Investigation of Bound and Free Water Transport Process During Drying of Hygroscopic Food Material. Int. J. Thermal Sci. 2017, 117, 266–273. DOI: 10.1016/j.ijthermalsci.2017.04.006.
  • Khan, M. I. H.; Nagy, S. A.; Karim, M. Transport of Cellular Water during Drying: An Understanding of Cell Rupturing Mechanism in Apple Tissue. Food Res. Int. 2018, 105, 772–781. DOI: 10.1016/j.foodres.2017.12.010.
  • Wang, H.; Zhu, L.; Xu, B. Principle and Methods of Nanoindentation Test, in Residual Stresses and Nanoindentation Testing of Films and Coatings. 2018., Springer Singapore: Singapore. p. 21–36.
  • Hayot, C. M.; Forouzesh, E.; Goel, A.; Avramova, Z.; Turner, J. A. Viscoelastic Properties of Cell Walls of Single Living Plant Cells Determined by Dynamic Nanoindentation. J. Exp. Bot. 2012, 63, 2525–2540. DOI: 10.1093/jxb/err428.
  • Gindl, W.; Gupta, H.; Schöberl, T.; Lichtenegger, H.; Fratzl, P. Mechanical Properties of Spruce Wood Cell Walls by Nanoindentation. Appl. Phys. A 2004, 79, 2069–2073. DOI: 10.1007/s00339-004-2864-y.
  • He, J.; Wang, W.; Yuan, C.; Chen, G.; Zhang, T.-Y. Mechanical Properties Improvement of Waterborne Polyurethane Coating Films After Rewetting and Drying. The Proceedings of the 5th Asia-Pacific Drying Conference: (In 2 Volumes). World Scientific, Hong Kong, China, 2007.
  • Odegard, G. M.; Gates, T. S.; Herring, H. M. Characterization of Viscoelastic Properties of Polymeric Materials through Nanoindentation. Exp. Mech. 2005, 45, 130–136. DOI: 10.1007/BF02428185.
  • Wahlquist, J. A.; DelRio, F. W.; Randolph, M. A.; Aziz, A. H.; Heveran, C. M.; Bryant, S. J.; Neu, C. P.; Ferguson, V. L. Indentation Mapping Revealed Poroelastic, but Not Viscoelastic, Properties Spanning Native Zonal Articular Cartilage. Acta Biomater. 2017, 64, 41–49. DOI: 10.1016/j.actbio.2017.10.003.
  • Liu, D.; Li, G.-Y.; Su, C.; Zheng, Y.; Jiang, Y.-X.; Qian, L.-X.; Cao, Y. Effect of Ligation on the Viscoelastic Properties of Liver Tissues. J. Biomech. 2018, 76, 235–240. DOI: 10.1016/j.jbiomech.2018.05.018.
  • Liang, K.; Xiao, S.; Shi, W.; Li, J.; Yang, X.; Gao, Y.; Gou, Y.; Hao, L.; He, L.; Cheng, L.; et al. 8DSS-Promoted Remineralization of Demineralized Dentin in Vitro. J. Mater. Chem. B 2015, 3, 6763–6772. DOI: 10.1039/C5TB00764J.
  • Boyer, G.; Laquieze, L.; Le Bot, A.; Laquièze, S.; Zahouani, H. Dynamic Indentation on Human Skin in Vivo: Ageing Effects. Skin Res. Technol. 2009, 15, (1), 55–67.
  • Rho, J.-Y.; Pharr, G. M. Effects of Drying on the Mechanical Properties of Bovine Femur Measured by Nanoindentation. J. Mater. Sci: Mater. Med. 1999, 10, 485–488. DOI: 10.1023/A:1008901109705.
  • Shuman, D. Computerized Image Analysis Software for Measuring Indents by AFM, Micros-copy-Analysis, P 21,(May 2005) Fischer-Cripps, AC Nanoindentation. Springer: New York, 2004.
  • Bouchon, P.; Aguilera, J. M. Microstructural Analysis of Frying Potatoes. Int. J. Food Sci. Tech. 2001, 36, 669–676. DOI: 10.1046/j.1365-2621.2001.00499.x.
  • Castro, L.; Aguilera, J. Fracture Properties and Microstructure of Low-Moisture Starch Probes. Dry. Technol. 2007, 25, 147–152. DOI: 10.1080/07373930601160981.
  • Gunning, P. Light Microscopy: Principles and Applications to Food Microstructures, In Food Microstructures. Morris, V. J., Groves, K., Eds.; Elsevier: Amsterdam, Netherlands, 2013; pp 62–95.
  • Parkkonen, T.; Heinonen, R.; Autio, K. A New Method for Determining the Area of Cell Walls in Rye Doughs Based on Fluorescence Microscopy and Computer-Assisted Image Analysis. LWT–Food Sci. Technol. 1997, 30, 743–747. DOI: 10.1006/fstl.1997.0262.
  • Costa, R. M.; Oliveira, F. A.; Boutcheva, G. Structural Changes and Shrinkage of Potato during Frying. Int. J. Food Sci. Tech. 2001, 36, 11–23. DOI: 10.1046/j.1365-2621.2001.00413.x.
  • Mali, S.; Grossmann, M. V. E.; Garcia, M. A.; Martino, M. N.; Zaritzky, N. E. Microstructural Characterization of Yam Starch Films. Carbohyd. Polym. 2002, 50, 379–386. DOI: 10.1016/S0144-8617(02)00058-9.
  • Thomas, G.; Burnham, N. A.; Camesano, T. A.; Wen, Q. Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy. Jove. 2013, e50497. DOI: 10.3791/50497.
  • Solon, J.; Levental, I.; Sengupta, K.; Georges, P. C.; Janmey, P. A. Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates. Biophys. J. 2007, 93, 4453–4461. DOI: 10.1529/biophysj.106.101386.
  • Leaper, M. C.; Prime, D.; Taylor, P.; Leach, V. Solid Bridge Formation between Spray-Dried Sodium Carbonate Particles. Dry. Technol. 2012, 30, 1008–1013. DOI: 10.1080/07373937.2012.682287.
  • Posé, S.; Paniagua, C.; Matas, A. J.; Gunning, A. P.; Morris, V. J.; Quesada, M. A.; Mercado, J. A. A Nanostructural View of the Cell Wall Disassembly Process during Fruit Ripening and Postharvest Storage by Atomic Force Microscopy. Trends Food Sci. Technol. 2019, 87, 47–58. DOI: 10.1016/j.tifs.2018.02.011.
  • Torode, T. A.; O’Neill, R.; Marcus, S. E.; Cornuault, V.; Pose, S.; Lauder, R. P.; Kračun, S. K.; Rydahl, M. G.; Andersen, M. C. F.; Willats, W. G. T.; et al. Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics. Plant Physiol. 2018, 176, 1547–1558. DOI: 10.1104/pp.17.01568.
  • Giannotti, M. I.; Vancso, G. J. Interrogation of Single Synthetic Polymer Chains and Polysaccharides by AFM‐Based Force Spectroscopy. ChemPhysChem 2007, 8, 2290–2307. DOI: 10.1002/cphc.200700175.
  • Gunning, A. P.; Morris, V. J. Getting the Feel of Food Structure with Atomic Force Microscopy. Food Hydrocoll. 2018, 78, 62–76. DOI: 10.1016/j.foodhyd.2017.05.017.
  • Zdunek, A.; Kurenda, A. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope. Sensors (Basel) 2013, 13, 12175–12191. DOI: 10.3390/s130912175.
  • Cárdenas-Pérez, S.; Chanona-Pérez, J.; Méndez-Méndez, J.; Calderón-Domínguez, G.; López-Santiago, R. Arzate-Vázquez, I. Nanoindentation Study on Apple Tissue and Isolated Cells by Atomic Force Microscopy, Image and Fractal Analysis. Innovat. Food Sci. Emerg. Technol. 2016, 34, 234–242. DOI: 10.1016/j.ifset.2016.02.004.
  • Lesniewska, E.; Adrian, M.; Klinguer, A.; Pugin, A. Cell Wall Modification in Grapevine Cells in Response to UV Stress Investigated by Atomic Force Microscopy. Ultramicroscopy 2004, 100, 171–178. DOI: 10.1016/j.ultramic.2003.11.004.
  • Burgert, I.; Keplinger, T. Plant Micro-and Nanomechanics: Experimental Techniques for Plant Cell-Wall Analysis. J. Exper. Bot. 2013, 64, 4635–4649. DOI: 10.1093/jxb/ert255.
  • Zdunek, A.; Kozioł, A.; Cybulska, J.; Lekka, M.; Pieczywek, P. M. The Stiffening of the Cell Walls Observed During Physiological Softening of Pears. Planta 2016, 243, 519–529. DOI: 10.1007/s00425-015-2423-0.
  • Kozioł, A.; Cybulska, J.; Pieczywek, P. M.; Zdunek, A. Changes of Pectin Nanostructure and Cell Wall Stiffness Induced in Vitro by Pectinase. Carbohyd. Polym. 2017, 161, 197–207. DOI: 10.1016/j.carbpol.2017.01.014.
  • Su, Y.; Zhang, M.; Mujumdar, A. S. Recent Developments in Smart Drying Technology. Dry. Technol. 2015, 33, 260–276. DOI: 10.1080/07373937.2014.985382.
  • McGlone, V.; Abe, H.; Kawano, S. Kiwifruit Firmness by near Infrared Light Scattering. J. of near Infrared Spectrosc. 1997, 5, 83–89. DOI: 10.1255/jnirs.102.
  • Il'iasov, S.; Krasnikov, V. V. Physical Principles of Infrared Irradiation of Foodstuffs. Hemisphere Pub. Corp: Washington, DC, 1991.
  • Norris, K. H. Design and Development of a New Moisture Meter. Agric. Eng. 1964, 45, 370–372.
  • Davies, A.; Grant, A. Near Infra‐Red Analysis of Food. Int. J. Food Sci. Technol. 1987, 22, 191–207. DOI: 10.1111/j.1365-2621.1987.tb00479.x.
  • Gunasekaran, S.; Irudayaraj, J. Optical Methods—Visible, NIR and FTIR Spectroscopy, in Nondestructive Food Evaluation—Techniques to Analyze Properties and Quality. CRC Press: Boca Raton, FL, 2000; pp 1–38.
  • Lammertyn, J.; Nicolaï, B.; Ooms, K.; De Smedt, V.; De Baerdemaeker, J. Non-Destructive Measurement of Acidity, Soluble Solids, and Firmness of Jonagold Apples Using NIR-Spectroscopy. Trans. ASAE 1998, 41, 1089–1094.
  • Han, Y.; Park, Y.; Park, J.-H.; Yang, S.-Y.; Eom, C.-D.; Yeo, H. The Shrinkage Properties of Red Pine Wood Assessed by Image Analysis and near-Infrared Spectroscopy. Dry. Technol. 2016, 34, 1613–1620. DOI: 10.1080/07373937.2016.1138964.
  • Clark, C.; McGlone, V.; Jordan, R. Detection of Brownheart in ‘Braeburn’ Apple by Transmission NIR Spectroscopy. Postharvest Biol. Technol. 2003, 28, 87–96. DOI: 10.1016/S0925-5214(02)00122-9.
  • Mehinagic, E.; Royer, G.; Symoneaux, R.; Bertrand, D.; Jourjon, F. Prediction of the Sensory Quality of Apples by Physical Measurements. Postharvest Biol. Technol. 2004, 34, 257–269. DOI: 10.1016/j.postharvbio.2004.05.017.
  • McGlone, V. A.; Kawano, S. Firmness, Dry-Matter and Soluble-Solids Assessment of Postharvest Kiwifruit by NIR Spectroscopy. Postharvest Biol. Technol. 1998, 13, 131–141. DOI: 10.1016/S0925-5214(98)00007-6.
  • Peirs, A.; Tirry, J.; Verlinden, B.; Darius, P.; Nicolaı¨, B. M. Effect of Biological Variability on the Robustness of NIR Models for Soluble Solids Content of Apples. Postharvest Biol. Technol. 2003, 28, 269–280. DOI: 10.1016/S0925-5214(02)00196-5.
  • Guthrie, J.; Reid, D.; Walsh, K. B. Assessment of Internal Quality Attributes of Mandarin Fruit. 2. NIR Calibration Model Robustness. Aust. J. Agric. Res. 2005, 56, 417–426. DOI: 10.1071/AR04299.
  • Guthrie, J.; Liebenberg, C.; Walsh, K. B. NIR Model Development and Robustness in Prediction of Melon Fruit Total Soluble Solids. Aust. J. Agric. Res. 2006, 57, 411–418. DOI: 10.1071/AR05123.
  • Golic, M.; Walsh, K. B. Robustness of Calibration Models Based on near Infrared Spectroscopy for the in-Line Grading of Stonefruit for Total Soluble Solids Content. Anal. Chim. Acta 2006, 555, 286–291. DOI: 10.1016/j.aca.2005.09.014.
  • Collell, C.; Gou, P.; Arnau, J.; Comaposada, J. Non-Destructive Estimation of Moisture, Water Activity and NaCl at Ham Surface during Resting and Drying Using NIR Spectroscopy. Food Chem. 2011, 129, 601–607. DOI: 10.1016/j.foodchem.2011.04.073.
  • Cuccurullo, G.; Giordano, L.; Albanese, D.; Cinquanta, L.; Di Matteo, M. Infrared Thermography Assisted Control for Apples Microwave Drying. J. Food Eng. 2012, 112, 319–325. DOI: 10.1016/j.jfoodeng.2012.05.003.
  • Pedreschi, F.; Segtnan, V.; Knutsen, S. On-Line Monitoring of Fat, Dry Matter and Acrylamide Contents in Potato Chips Using near Infrared Interactance and Visual Reflectance Imaging. Food Chem. 2010, 121, 616–620. DOI: 10.1016/j.foodchem.2009.12.075.
  • Stawczyk, J.; Muñoz, I.; Collell, C.; Comaposada, J. Control System for Sausage Drying Based on on-Line NIR aw Determination. Dry. Technol. 2009, 27, 1338–1343. DOI: 10.1080/07373930903383620.
  • Do, G.; Araki, T.; Bae, Y.; Ishikura, K.; Sagara, Y. Three-Dimensional Measurement of Ice Crystals in Frozen Materials by near-Infrared Imaging Spectroscopy. Dry. Technol. 2015, 33, 1614–1620. DOI: 10.1080/07373937.2015.1029073.
  • Zhang, J. Q.; Yan, Y. On-Line Continuous Measurement of Particle Size Using Electrostatic Sensors. Powder Technology 2003, 135, 164–168. DOI: 10.1016/j.powtec.2003.08.012.
  • Ma, J.; Yan, Y. Design and Evaluation of Electrostatic Sensors for the Measurement of Velocity of Pneumatically Conveyed Solids. Flow Meas. Instrum. 2000, 11, 195–204. DOI: 10.1016/S0955-5986(00)00019-4.
  • Paczkowski, S.; Jaeger, D.; Pelz, S. Semi-Conductor Metal Oxide Gas Sensors for Online Monitoring of Oak Wood VOC Emissions during Drying. Dry. Technol. 2019, 37, 1081–1086. DOI: 10.1080/07373937.2018.1484757.
  • Abdalla, A. N.; Nubli, M.; Siong, T. C.; Khairi, F.; Noraziah, A. Enhancement of Real-Time Multi-Patient Monitoring System Based on Wireless Sensor Networks. Int. J. Phys. Sci. 2011, 6, 664–670.
  • Portoghese, F.; Berruti, F.; Briens, C. Continuous on-Line Measurement of Solid Moisture Content during Fluidized Bed Drying Using Triboelectric Probes. Powder Technol. 2008, 181, 169–177. DOI: 10.1016/j.powtec.2007.01.003.
  • Brennan, W.; Jacobson, M.; Book, G.; Briens, C.; Briens, L. Development of a Tribolelectric Procedure for the Measurement of Mixing and Drying in a Vibrated Fluidized Bed. Powder Technology 2008, 181, 178–185. DOI: 10.1016/j.powtec.2006.12.002.
  • Lv, W.; Zhang, M.; Wang, Y.; Adhikari, B. Online Measurement of Moisture Content, Moisture Distribution, and State of Water in Corn Kernels during Microwave Vacuum Drying Using Novel Smart NMR/MRI Detection System. Dry. Technol. 2018, 36, 1592–1602. DOI: 10.1080/07373937.2017.1418751.
  • Roknul Azam, S.; Zhang, M.; Law, C. L.; Mujumdar, A. S. Effects of Drying Methods on Quality Attributes of Peach (Prunus Persica) Leather. Dry. Technol. 2019, 37, 341–351. DOI: 10.1080/07373937.2018.1454942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.