140
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of the thermal level on the viability of microencapsulated living cells dehydrated by near fluidizing microwave drying

, ORCID Icon & ORCID Icon
Pages 219-233 | Received 17 Apr 2019, Accepted 19 Aug 2019, Published online: 10 Sep 2019

References

  • Trojanowska, A.; Giamberini, M.; Tsibranska, I.; Nowak, M.; Marciniak, L.; Jatrzab, R. Microencapsulation in Food Chemistry. J. Membr. Sci. Res. 2017, 3, 265–271.
  • Emami, F.; Vatanara, A.; Park, E. J.; Na, D. H. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018, 10, 131–152. DOI:10.3390/pharmaceutics10030131.
  • Kudra, T.; Mujumdar, A. S. Advanced Drying Technologies; CRC Press: Boca Raton, FL, 2009; pp 5–9.
  • Anal, A. K.; Stevens, W. E.; Remunan-Lopez, C. Ionotropic Cross-Linked Chitosan Microspheres for Controlled Release of Ampicillin. Int. J. Pharmaceut. 2006, 312, 166–173. DOI:10.1016/j.ijpharm.2006.01.043.
  • Annan, N. T.; Borza, A. D.; Truelstrup Hansen, L. Encapsulation in Alginate Coated Gelatin Microspheres Improves Survival of the Probiotic Bifidobacterium adolescentis 15703T during Exposure to Simulated Gastro-Intestinal Conditions. Food Res. Int. 2008, 41, 184–193. DOI:10.1016/j.foodres.2007.11.001.
  • Buriti, F. C. A.; Castro, I. A.; Saad, S. M. I. Viability of Lactobacillus acidophilus in Symbiotic Guava Mousses and Its Survival under in Vitro Simulated Gastrointestinal Conditions. Int. J. Food Microbiol. 2010, 137, 121–129. DOI:10.1016/j.ijfoodmicro.2009.11.030.
  • Anal, A. K.; Singh, H. Recent Advances in Microencapsulation of Probiotics for Industrial Applications and Targeted Delivery. Trends Food Sci. Technol. 2007, 18, 240–251. DOI:10.1016/j.tifs.2007.01.004.
  • Chandramouli, V.; Kailasapathy, K.; Peiris, P.; Jones, M. An Improved Method of Microencapsulation and Its Evaluation to Protect Lactobacillus Spp in Simulated Gastric Conditions. J. Microbiol. Methods. 2004, 57, 27–35. DOI:10.1016/j.mimet.2003.09.002.
  • Cook, M. T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V. V. Microencapsulation of Probiotics for Gastrointestinal Delivery. J. Control. Release 2012, 162, 56–67. DOI:10.1016/j.jconrel.2012.06.003.
  • Heidebach, T.; Forst, P.; Kulozik, U. Microencapsulation of Probiotic Cells for Food Applications. Crit. Rev. Food Sci. Nutr. 2012, 52, 291–311. DOI:10.1080/10408398.2010.499801.
  • Krasaekoopt, W.; Bhandari, B.; Deeth, H. Evaluation of Encapsulation Techniques of Probiotics for Yoghurt. Int. Dairy J. 2003, 13, 3–13. DOI:10.1016/S0958-6946(02)00155-3.
  • Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of Probiotic Living Cells: From Laboratory Scale to Industrial Application. J. Food Eng. 2011, 104, 467–483. DOI:10.1016/j.jfoodeng.2010.12.031.
  • Selmer-Olsen, E.; Birkeland, S. E.; Sorhaug, T. Effect of Protective Solutes on Leakage from and Survival of Immobilized Lactobacillus Subjected to Drying, Storage and Rehydration. J. Appl. Microbiol. 1999, 87, 429–437. DOI:10.1046/j.1365-2672.1999.00839.x.
  • Carvalho, A. S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F. X.; Gibbs, P. Survival of Freeze-Dried Lactobacillus plantarum and Lactobacillus rhamnosus during Storage in the Presence of Protectants. Biotechnol. Lett. 2002, 24, 1587–1591.
  • Wang, Y. C.; Yu, R. C.; Chou, C. C. Viability of Lactic Acid Bacteria and Bifidobacteria in Fermented Soymilk after Drying, Subsequent Rehydration and Storage. Int. J. Food Microbiol. 2004, 93, 209–217. DOI:10.1016/j.ijfoodmicro.2003.12.001.
  • Carvalho, A. S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F. X.; Gibbs, P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int. Dairy J. 2004, 14, 835–847. DOI:10.1016/j.idairyj.2004.02.001.
  • Zayed, G.; Roos, Y. H. Influence of Trehalose and Moisture Content on Survival of Lactobacillus salivarius Subjected to Freeze-Drying and Storage. Process Biochem. 2004, 39, 1081–1086. DOI:10.1016/S0032-9592(03)00222-X.
  • Lombraña, J. I.; Rodriguez, R.; Ruiz, U. Moisture Microwave-Drying of Sliced Mushroom. Analysis of Temperature Control and Pressure. Innov. Food Sci. Emerg. Technol. 2010, 11, 652–660.
  • Lombraña, J. I. Fundamentals and Tendencies in Freeze-Drying of Foods. In Advances in Food Dehydration; Ratti, C. Ed.; CRC Press: Boca Raton, FL, 2009; pp 209–235.
  • Rodriguez, R.; Lombraña, J. I. Moisture Diffusivity Analysis in a Microwave Drying Process under Different Operating Conditions. Drying Technol. 2007, 25, 1875–1883. DOI:10.1080/07373930701677942.
  • Rodriguez, R.; Lombraña, J. I.; Kamel, M.; de Elvira, C. Kinetic and Quality Study of Mushroom Drying under Microwave and Vacuum. Drying Technol. 2005, 23, 2197–2213. DOI:10.1080/07373930500212685.
  • Qi, L. L.; Zhang, M.; Mujumdar, A. S.; Meng, X. Y.; Chen, H. Z. Comparison of Drying Characteristics and Quality of Shiitake Mushrooms (Lentinus Edodes) Using Different Drying Methods. Drying Technol. 2014, 32, 1751–1761. DOI:10.1080/07373937.2014.929588.
  • Nguyen, V. T.; Pham, N. M. Q.; Vuong, Q. V.; Bowyer, M. C.; van Altena, I. A.; Scarlett, C. J. Phytochemical Retention and Antioxidant Capacity of Xao Tam Phan (Paramignya trimera) Root as Prepared by Different Drying Methods. Drying Technol. 2016, 34, 324–334.
  • Dev, S. R. S.; Raghavan, V. G. S. Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technol. 2012, 30, 1147–1159. DOI:10.1080/07373937.2012.692747.
  • Jangam, S. V. Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Drying Technol. 2011, 29, 1343–1357. DOI:10.1080/07373937.2011.594378.
  • Zielinska, M.; Zapotoczny, P.; Alves-Filho, O.; Eikevik, T. M.; Blaszczak, W. Microwave Vacuum-Assisted Drying of Green Peas Using Heat Pump and Fluidized Bed: A Comparative Study between Atmospheric Freeze Drying and Hot Air Convective Drying. Drying Technol. 2013, 31, 633–642. DOI:10.1080/07373937.2012.751921.
  • Stanislawski, J. Drying of Diced Carrot in a Combined Microwave-Fluidized Bed Dryer. Drying Technol. 2005, 23, 1711–1721.
  • Kaensup, W.; Wongwises, S. Combined Microwave/Fluidized Bed Drying of Fresh Peppercorns. Drying Technol. 2004, 22, 779–794. DOI:10.1081/DRT-120034262.
  • Liu, P.; Zhang, M.; Mujumdar, A. S. Purple-Fleshed Sweet Potato Cubes Drying in a Microwave-Assisted Spouted Bed Dryer. Drying Technol. 2014, 32, 1865–1871. DOI:10.1080/07373937.2014.953174.
  • Zielinska, M.; Sadowski, P.; Błaszczak, W. Combined Hot Air Convective Drying and Microwave–Vacuum Drying of Blueberries (Vaccinium corymbosum L.): Drying Kinetics and Quality Characteristics. Drying Technol. 2016, 34, 665–684.
  • Sangdao, C.; Songsermpong, S.; Krairiksh, M. A Continuous Fluidized Bed Microwave Paddy Drying System Using Applicators with Perpendicular Slots on a Concentric Cylindrical Cavity. Drying Technol. 2010, 29, 35–46. DOI:10.1080/07373937.2010.482721.
  • Kudra, T.; Mujumdar, A. S. Advanced Drying Technologies. CRC Press: Boca Raton, FL, 2009; pp 353–370.
  • Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modelling. Food Eng. Rev. 2012, 4, 89–106. DOI:10.1007/s12393-012-9048-x.
  • Feng, H.; Tang, J. Microwave Finish Drying of Diced Apples in a Spouted Bed. J. Food Sci. 2006, 63, 679–683. DOI:10.1111/j.1365-2621.1998.tb15811.x.
  • Li, Y.; Xu, S.; Sun, D. Preparation of Garlic Powder with High Allicin Content by Using Combined Microwave–Vacuum and Vacuum Drying as Well as Microencapsulation. J. Food Eng. 2007, 83, 76–83. DOI:10.1016/j.jfoodeng.2007.02.057.
  • Li, Z.; Raghavan, G. S. V.; Wang, N.; Vigneault, C. Drying Rate Control in the Middle Stage of Microwave Drying. J. Food Eng. 2011, 104, 234–238. DOI:10.1016/j.jfoodeng.2010.12.014.
  • Ruiz, U.; Lombraña, J. I. Effects of the Inverse Temperature Gradient in Microwave Drying Kinetics of Pasta. Presented at 17th International Drying Symposium, Magdeburg, Germany; pp 2098–2104, 2010.
  • Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F. C.; Marzo, F.; Villarán, M. d C. Microencapsulation of a Probiotic and Prebiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastro-Intestinal Conditions. Int. J. Food Microbiol. 2010, 142, 185–189. DOI:10.1016/j.ijfoodmicro.2010.06.022.
  • Martín, M. J.; Lara-Villoslada, F.; Ruiz, M. A.; Morales, M. E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. DOI:10.1016/j.ifset.2014.09.010.
  • Connors, K. A. The Karl Fischer Titration of Water. Drug Dev. Ind. Pharm. 1988, 14, 1891–1903. DOI:10.3109/03639048809151996.
  • Krasaekoopt, W.; Bhandari, B.; Deeth, H. Survival of Probiotics Encapsulated in Chitosan-Coated Alginate Beads in Yoghurt from UHT- and Conventionally Treated Milk during Storage. LWT Food Sci. Technol. 2006, 39, 177–183. DOI:10.1016/j.lwt.2004.12.006.
  • Iaconelli, C.; Lemetais, G.; Kechaou, N.; Chain, F.; Bermúdez-Humarán, L. G.; Langella, P.; Gervais, P.; Beney, L. Drying Process Strongly Affects Probiotics Viability and Functionalities. J. Biotechnol. 2015, 214, 17–26. DOI:10.1016/j.jbiotec.2015.08.022.
  • Mardaras, J.; Lombraña, J. I.; Villarán, C. Near-Fluidizing Microwave Drying to Stabilize Encapsulated Material: Analysis of Kinetic, Energy and Quality Elements. Drying Technol. 2019, 8, 976–987. DOI:10.1080/07373937.2018.1481086.
  • Bergman, T. L.; Incropera, F. P.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, 2011; pp 431–447.
  • Vesterlund, S.; Salminen, K.; Salminen, S. Water Activity in Dry Foods Containing Live Probiotic Bacteria Should Be Carefully Considered: A Case Study with Lactobacillus rhamnosus GG in Flaxseed. Int. J. Food Microbiol. 2012, 157, 319–321. DOI:10.1016/j.ijfoodmicro.2012.05.016.
  • Levenspiel, O. Flow through Packed Beds in Engineering Flow and Heat Exchange. Springer: New York, NY, 2014; pp 133–153.
  • Rudy, S.; Dziki, D.; Krzykowski, A.; Gawlik-Dziki, U.; Polak, R.; Różyło, R.; Kulig, R. Influence of Pre-Treatments and Freeze-Drying Temperature on the Process Kinetics and Selected Physico-Chemical Properties of Cranberries (Vaccinium macrocarpon Ait.). LWT Food Sci. Technol. 2015, 63, 497–503. DOI:10.1016/j.lwt.2015.03.067.
  • Schmitz-Schug, I.; Kulozik, U.; Foerst, P. Modeling Spray Drying of Dairy Products – Impact of Drying Kinetics, Reaction Kinetics and Spray Drying Conditions on Lysine Loss. Chem. Eng. Sci. 2016, 141, 315–329. DOI:10.1016/j.ces.2015.11.008.
  • Scaman, C. H.; Durance, T. D.; Drummond, L.; Sun, D. Chapter 23 – Combined Microwave Vacuum Drying. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D., Ed.; Academic Press: San Diego, CA, 2014; pp 427–445.
  • Florides, G. A.; Christodoulides, P.; Pouloupatis, P. An Analysis of Heat Flow through a Borehole Heat Exchanger Validated Model. Appl. Energy 2012, 92, 523–533. DOI:10.1016/j.apenergy.2011.11.064.
  • Abbasi Souraki, B.; Mowla, D. Experimental and Theoretical Investigation of Drying Behaviour of Garlic in an Inert Medium Fluidized Bed Assisted by Microwave. J. Food Eng. 2008, 88, 438–449. DOI:10.1016/j.jfoodeng.2007.12.034.
  • Viernstein, H.; Raffalt, J.; Polheim, D. Stabilisation of Probiotic Microorganisms. In Applications of Cell Immobilisation Biotechnology; Nedovic, V., Willaert, R., Eds.; Springer: Dordrecht, 2005; pp 439–455.
  • FAO/WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. World Health Organization: Córdoba, 2001.
  • Chavez, B.; Ledeboer, A. Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Drying Technol. 2007, 25, 1193–1201. DOI:10.1080/07373930701438576.
  • Manojlovic, V.; Nedovic, V. A.; Kailasapathy, K.; Zuidam, N. J. Encapsulation of Probiotics for Use in Food Products. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Zuidam, N. J., Nedovic, V. A., Eds.; Springer: New York, NY, 2010; pp 269–302.
  • Foerst, P.; Kulozik, U. Modelling the Dynamic Inactivation of the Probiotic Bacterium L. Paracasei Ssp. Paracasei during a Low-Temperature Drying Process Based on Stationary Data in Concentrated Systems. Food Bioprocess. Technol. 2012, 5, 2419–2427. DOI:10.1007/s11947-011-0560-4.
  • Aronsson, K.; Rönner, U. Influence of pH, Water Activity and Temperature on the Inactivation of Escherichia coli and Saccharomyces cerevisiae by Pulsed Electric Fields. Innov. Food Sci. Emerg. Technol. 2001, 2, 105–112. DOI:10.1016/S1466-8564(01)00030-3.
  • Capela, P.; Hay, T. K. C.; Shah, N. P. Effect of Cryoprotectants, Prebiotics and Microencapsulation on Survival of Probiotic Organisms in Yoghurt and Freezedried Yoghurt. Food Res. Int. 2006, 39, 203–211. DOI:10.1016/j.foodres.2005.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.