303
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 245-258 | Received 01 Apr 2019, Accepted 03 Oct 2019, Published online: 17 Oct 2019

References

  • Mulet, A.; Cárcel, J. A.; Sanjuan, N.; García-Pérez, J. V. Food Dehydration Under Forced Convection Conditions. In Current Trends in Chemical Engineering, Houston, TX: Studium Press LLC, 2010; pp 153–177.
  • Motevali, A.; Minaei, S.; Khoshtagaza, M. H. Evaluation of Energy Consumption in Different Drying Methods. Energy Convers. Manage. 2011, 52, 1192–1199. DOI: 10.1016/j.enconman.2010.09.014.
  • Gallego-Juarez, J. A.; Rodriguez, G.; Gálvez, J. C.; Yang, T. S. A New High-Intensity Ultrasonic Technology for Food Dehydration. Dry. Technol. 1999, 17, 597–608. DOI: 10.1080/07373939908917555.
  • Riera, E.; Gallego-Juárez, J. A.; Rodríguez, G.; Acosta, V. M.; Andrés, E. Application of High-Power Ultrasound for Drying Vegetables. In Forum Acusticum; Sevilla, 2002.
  • Mulet, A.; Cárcel, J. A.; Sanjuán, N.; Bon, J. New Food Drying Technologies – Use of Ultrasound. Food Sci. Technol. Int. 2003, 9, 215–221. DOI: 10.1177/1082013203034641.
  • Riera, E.; García-Pérez, J. V.; Cárcel, J. A.; Acosta, V. M.; Gallego-Juárez, J. A. Computational study of ultrasound-assisted drying of food materials. In Innovative Food Processing Technologies: Advances in Multiphysics Simulation, Knoerzer, K., Juliano, P., Roupas, P., Versteeg, C., Eds.; Chichester, UK: Blackwell Publishing Ltd., 2011; pp 265–301.
  • Gallego-Juárez, J. A.; Riera, E.; De la Fuente, S.; Rodríguez, G.; Acosta, V. M.; Blanco, A. Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Dry. Technol. 2007, 25, 1893–1901. DOI: 10.1080/07373930701677371.
  • Gallego-Juárez, J. A.; Rodriguez, G.; Acosta, V. M.; Riera, E. Power Ultrasonic Transducers with Extensive Radiators for Industrial Processing. Ultrason. Sonochem. 2010, 17, 953–964. DOI: 10.1016/j.ultsonch.2009.11.006.
  • Mulet, A.; Cárcel, J. A.; García-Pérez, J. V.; Riera, E. Ultrasound-Assisted Hot Air Drying of Foods. In Ultrasound Technologies for Food and Bioprocessing, Feng, H., Barbosa-Canovas, G., Weiss, J., Eds.; New York, NY: Springer New York, 2011; pp 511–534.
  • Cárcel, J. A.; García‐Pérez, J. V.; Riera, E.; Rosselló, C.; Mulet, A. Drying Assisted by Power Ultrasound. Mod. Dry. Technol. 2014, 8, 237–276.
  • Gallego-Juárez, J. A.; Rodríguez, G.; Acosta, V. M.; Riera, E.; Cardoni, A. Power Ultrasonic Transducers With Vibrating Plate Radiators. In Power Ultrasonics, Gallego-Juárez, J. A., Graff, K. F., Eds.; Oxford: Woodhead Publishing, 2015; pp 159–193.
  • García-Pérez, J. V.; Carcel, J. A.; Mulet, A.; Riera, E.; Gallego-Juarez, J. A. Ultrasonic drying for food preservation. In Power Ultrasonics; Oxford: Woodhead Publishing, 2015; pp 875–910.
  • Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound – A Review. Trends Food Sci. Technol. 2016, 56, 126–141. DOI: 10.1016/j.tifs.2016.08.003.
  • Onwude, D. I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A. O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innov. Food Sci. Emerg. Technol. 2017, 43, 223–238. DOI: 10.1016/j.ifset.2017.08.010.
  • Fan, K.; Zhang, M.; Mujumdar, A. S. Application of Airborne Ultrasound in the Convective Drying of Fruits and Vegetables: A Review. Ultrason. Sonochem. 2017, 39, 47–57. DOI: 10.1016/j.ultsonch.2017.04.001.
  • Cárcel, J. A.; García‐Pérez, J. V.; Riera, E.; Rosselló, C.; Mulet, A. Ultrasonically Assisted Drying. In Ultrasound in Food Processing: Recent Advances, Villamiel, M., García-Pérez, J. V., Montilla, A., Cárcel, J. A., Benedito, J., Eds.; Chichester, UK: John Wiley and Sons, 2017; pp 371–391.
  • Rodríguez, O.; Eim, V.; Rosselló, C.; Femenia, A.; Cárcel, J. A.; Simal, S. Application of Power Ultrasound on the Convective Drying of Fruits and Vegetables: Effects on Quality. J. Sci. Food Agric. 2018, 98, 1660–1673. DOI: 10.1002/jsfa.8673.
  • Ozuna, C.; Cárcel, J. A.; García‐Pérez, J. V.; Mulet, A. Improvement of Water Transport Mechanisms during Potato Drying by Applying Ultrasound. J. Sci. Food Agric. 2011, 91, 2511–2517. DOI: 10.1002/jsfa.4344.
  • Ozuna, C.; Gómez Álvarez-Arenas, T.; Riera, E.; Cárcel, J. A.; Garcia-Pérez, J. V. Influence of Material Structure on Air-Borne Ultrasonic Application in Drying. Ultrason. Sonochem. 2014, 21, 1235–1243. DOI: 10.1016/j.ultsonch.2013.12.015.
  • García-Pérez, J. V.; Cárcel, J. A.; Riera, E.; Mulet, A. Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Dry. Technol. 2009, 27, 281–287. DOI: 10.1080/07373930802606428.
  • García-Pérez, J. V.; Ozuna, C.; Ortuño, C.; Cárcel, J. A.; Mulet, A. Modeling Ultrasonically Assisted Convective Drying of Eggplant. Dry. Technol. 2011, 29, 1499–1509. DOI: 10.1080/07373937.2011.576321.
  • García-Pérez, J. V.; Ortuño, C.; Puig, A.; Cárcel, J. A.; Pérez-Munuera, I. Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food Bioprocess. Technol. 2012, 5, 2256–2265. DOI: 10.1007/s11947-011-0645-0.
  • Gallego‐Juárez, J. A. Basic Principles of Ultrasound. Ultrasound Food Process. 2017, 1, 1–26.
  • Charoux, C. M. G.; Ojha, K. S.; O'Donnell, C. P.; Cardoni, A.; Tiwari, B. K. Applications of Airborne Ultrasonic Technology in the Food Industry. J. Food Eng. 2017, 208, 28–36. DOI: 10.1016/j.jfoodeng.2017.03.030.
  • García-Pérez, J. V. Contribución al Estudio de la Aplicación de Ultrasonidos de Potencia en el Secado Convectivo de Alimentos. Univ. Politècnica Valèn. 2007; pp 1–27.
  • Gallego-Juárez, J. A.; Riera, E. Technologies and Applications of Airborne Power Ultrasound in Food Processing. In Ultrasound Technologies for Food and Bioprocessing; New York, NY: Springer, 2011; pp 617–641.
  • Chemat, F.; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835.
  • Riera, E.; Acosta, V. M.; Blanco, A.; Gallego-Juárez, J. A.; Cardoni, A. New Trends in Air Coupled Power Ultrasound Applications. In Forum Acusticum, Krakow: European Acoustics Association, 2014.
  • Gallego-Juárez, J. A. High-Power Ultrasonic Processing: Recent Developments and Prospective Advances. Phys. Procedia 2010, 3, 35–47.
  • Muralidhara, H.; Ensminger, S. D.; Putnam, A. Acoustic Dewatering and Drying (Low and High Frequency): State of the Art Review. Dry. Technol. 1985, 3, 529–566. DOI: 10.1080/07373938508916296.
  • Acosta-Aparicio, V. M.; Cárcel, J. A.; Gallego-Juárez, J. A.; García-Pérez, J. V.; Mulet, A.; Peña, R.; Riera, E. Method and Device for Improving Material Transfer in Low-Temperature Processes Using High-Intensity Ultrasound. Patent WO 2013/041750 A1, 2013.
  • Bantle, M.; Eikevik, T. M. Parametric Study of High-Intensity Ultrasound in the Atmospheric Freeze Drying of Peas. Dry. Technol. 2011, 29, 1230–1239. DOI: 10.1080/07373937.2011.584256.
  • Bantle, M.; Eikevik, T. M. A Study of the Energy Efficiency of Convective Drying Systems Assisted by Ultrasound in the Production of Clipfish. J. Cleaner Prod. 2014, 65, 217–223. DOI: 10.1016/j.jclepro.2013.07.016.
  • Bantle, M.; Eikevik, T. M.; Grüttner, A. Mass transfer in ultrasonic assisted atmospheric freeze drying. In 17th International Drying Symposium, Magdeburg, Germany, 2010.
  • Schössler, K.; Jäger, H.; Knorr, D. Novel Contact Ultrasound System for the Accelerated Freeze-Drying of Vegetables. Innov. Food Sci. Emerg. Technol. 2012, 16, 113–120. DOI: 10.1016/j.ifset.2012.05.010.
  • Schössler, K.; Jäger, H.; Knorr, D. Effect of Continuous and Intermittent Ultrasound on Drying Time and Effective Diffusivity during Convective Drying of Apple and Red Bell Pepper. J. Food Eng. 2012, 108, 103–110. DOI: 10.1016/j.jfoodeng.2011.07.018.
  • de la Fuente, S.; Riera, E.; Acosta, V. M.; Blanco, A.; Gallego-Juárez, J. A. Food Drying Process by Power Ultrasound. Ultrasonics. 2006, 44, e523–e527. DOI: 10.1016/j.ultras.2006.05.181.
  • García-Pérez, J. V.; Cárcel, J. A.; de la Fuente, S.; Riera, E. Ultrasonic Drying of Foodstuff in a Fluidized Bed: Parametric Study. Ultrasonics. 2006, 44, e539–e543. DOI: 10.1016/j.ultras.2006.06.059.
  • García-Pérez, J. V.; Rosselló, C.; Cárcel, J. A.; De la Fuente, S.; Mulet, A. Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. In Defect and Diffusion Forum, Switzerland: Trans Tech Publications, 2006; pp 563–574.
  • Puig, A.; Perez-Munuera, I.; Carcel, J. A.; Hernando, I.; Garcia-Perez, J. V. Moisture Loss Kinetics and Microstructural Changes in Eggplant (Solanum melongena L.) during Conventional and Ultrasonically Assisted Convective Drying. Food Bioprod. Process. 2012, 90, 624–632. DOI: 10.1016/j.fbp.2012.07.001.
  • do Nascimento, E.; Mulet, A.; Ramírez, J. L.; Piler de Carvalho, C. W.; Cárcel, J. A. Effects of High-Intensity Ultrasound on Drying Kinetics and Antioxidant Properties of Passion Fruit Peel. J. Food Eng. 2016, 170, 108–118. DOI: 10.1016/j.jfoodeng.2015.09.015.
  • García-Pérez, J. V.; Cárcel, J. A.; Riera, E.; Rosselló, C.; Mulet, A. Intensification of Low-Temperature Drying by Using Ultrasound. Dry. Technol. 2012, 30, 1199–1208. DOI: 10.1080/07373937.2012.675533.
  • Santacatalina, J. V.; Cárcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A. Atmospheric Freeze Drying Assisted by Power Ultrasound. IOP Conf. Ser: Mater. Sci. Eng. 2012, 42, 012021. DOI: 10.1088/1757-899X/42/1/012021.
  • García-Pérez, J. V.; Bon, J.; Mulet, A.; Gallego Juárez, J. A.; Riera, E. Convective Drying of Foodstuffs Under the Action of High Power Ultrasound. In 2013 International Congress on Ultrasonics (ICU2013), Singapore, 2013. pp 179–184.
  • Santacatalina, J. V.; Rodríguez, O.; Simal, S.; Cárcel, J. A.; Mulet, A.; García-Pérez, J. V. Ultrasonically Enhanced Low-Temperature Drying of Apple: Influence on Drying Kinetics and Antioxidant Potential. J. Food Eng. 2014, 138, 35–44. DOI: 10.1016/j.jfoodeng.2014.04.003.
  • Santacatalina, J. V.; Fissore, D.; Cárcel, J. A.; Mulet, A.; García-Pérez, J. V. Model-Based Investigation into Atmospheric Freeze Drying Assisted by Power Ultrasound. J. Food Eng. 2015, 151, 7–15. DOI: 10.1016/j.jfoodeng.2014.11.013.
  • Brines, C.; Mulet, A.; García-Pérez, J. V.; Riera, E.; Cárcel, J. A. Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics. Phys. Proc. 2015, 70, 850–853. DOI: 10.1016/j.phpro.2015.08.174.
  • Santacatalina, J. V.; Contreras, M.; Simal, S.; Cárcel, J. A.; García-Pérez, J. V. Impact of Applied Ultrasonic Power on the Low Temperature Drying of Apple. Ultrason. Sonochem. 2016, 28, 100–109. DOI: 10.1016/j.ultsonch.2015.06.027.
  • Santacatalina, J. V.; Soriano, J. R.; Cárcel, J. A.; Garcia-Perez, J. V. Influence of Air Velocity and Temperature on Ultrasonically Assisted Low Temperature Drying of Eggplant. Food Bioprod. Process. 2016, 100, 282–291. DOI: 10.1016/j.fbp.2016.07.010.
  • Cárcel, J. A.; Garcia Perez, J. V.; Santacatalina, J. V.; Riera, E.; Rosselló, C.; Mulet, A. Low Temperature Drying Enhancement Using Ultrasound. In the 20th International Drying Symposium (IDS2016), Gifu, Japan, 2016; pp C-4-1.
  • Colucci, D.; Fissore, D.; Mulet, A.; Cárcel, J. A. On the Investigation into the Kinetics of the Ultrasound-Assisted Atmospheric Freeze Drying of Eggplant. Dry. Technol. 2017, 35, 1818–1831. DOI: 10.1080/07373937.2016.1277738.
  • Moreno, C.; Brines, C.; Mulet, A.; Rosselló, C.; Cárcel, J. A. Antioxidant Potential of Atmospheric Freeze-Dried Apples as Affected by Ultrasound Application and Sample Surface. Dry. Technol. 2017, 35, 957–968. DOI: 10.1080/07373937.2016.1256890.
  • Carrión, C.; Mulet, A.; García-Pérez, J. V.; Cárcel, J. A. Ultrasonically Assisted Atmospheric Freeze-Drying of Button Mushroom. Drying Kinetics and Product Quality. Dry. Technol. 2018, 36, 1814–1823. DOI: 10.1080/07373937.2017.1417870.
  • Vallespir, F.; Cárcel, J. A.; Marra, F.; Eim, V. S.; Simal, S. Improvement of Mass Transfer by Freezing Pre-Treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food Bioprocess. Technol. 2018, 11, 72–83. DOI: 10.1007/s11947-017-1999-8.
  • Colucci, D.; Fissore, D.; Rossello, C.; Carcel, J. A. On the Effect of Ultrasound-Assisted Atmospheric Freeze-Drying on the Antioxidant Properties of Eggplant. Food Res. Int. 2018, 106, 580–588. DOI: 10.1016/j.foodres.2018.01.022.
  • Cárcel, J. A.; García-Perez, J. V.; Riera, E.; Mulet, A. Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Dry. Technol. 2011, 29, 174–182. DOI: 10.1080/07373937.2010.483032.
  • Ozuna, C. Estudio de la aplicación de ultrasonidos de alta intensidad en sistemas sólido-líquido y sólido-gas. Influencia en la cinética de transporte de materia y en la estructura de los productos. Editorial Universitat Politècnica de València; 2014.
  • Andrés, R. R.; Acosta, V. M.; Pinto, A.; Riera, E. Airborne Power Ultrasonic Systems for Food Dehydration Processes Intensification. Presented at the 25th International Congress on Sound and Vibration ICSV25, Hiroshima (Japan); 2018.
  • Andrés, R. R.; Blanco, A.; Riera, E.; Guinot, A. Description of an Ultrasonic Technology for Food Dehydration Process Intensification. Proc. Meet. Acoust. 2016, 28, 045003.
  • Ramos, A.; Gallego-Juárez, J. A.; Montoya, F. Automatic System for Dynamic Control of Resonance in High Power and High Q Ultrasonic Transducers. Ultrasonics. 1985, 23, 151–156.
  • Kuang, Y.; Jin, Y.; Cochran, S.; Huang, Z. Resonance Tracking and Vibration Stablilization for High Power Ultrasonic Transducers. Ultrasonics. 2014, 54, 187–194. DOI: 10.1016/j.ultras.2013.07.001.
  • AOAC standard method no. 934.06 EEUU. Association of Official Analytical Chemist. Official Methods of Analysis. Arlington: AOAC, 1997.
  • Vega‐Gálvez, A.; Miranda, M.; Bilbao-Sáinz, C.; Uribe, E.; Lemus-Mondaca, R. Empirical Modeling of Drying Process for Apple (cv. Granny Smith) Slices at Different Air Temperatures. J. of Food Process. Preserv. 2008, 32, 972–986. DOI: 10.1111/j.1745-4549.2008.00227.x.
  • Andrés, R. R.; Acosta, V. M.; Riera, E. Ultrasonic Field Generated by Different Airborne Power Ultrasonic Transducers with Extensive Radiators. In Tecniacústica 2017: 48° Congreso Español de Acústica; Encuentro Ibérico de Acústica; European Symposium on Underwater Acoustics Applications; European Symposium on Sustainable Building Acoustics: A Coruña 3-6 Octubre 2017; 2017; pp 1299–1312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.