Publication Cover
Drying Technology
An International Journal
Volume 38, 2020 - Issue 16
315
Views
6
CrossRef citations to date
0
Altmetric
Articles

Intensification of cellulosic fiber drying through fundamental insights and process modeling

, , , &
Pages 2151-2161 | Received 19 Dec 2018, Accepted 19 Oct 2019, Published online: 06 Nov 2019

References

  • Cay, A.; Gurlek, G.; Oglakcioglu, N. Analysis and Modelling of Drying Behaviour of Knitted Textile Materials. Dry. Technol. 2017, 35, 509–521. DOI: 10.1080/07373937.2016.1192190.
  • Su, C. I.; Fang, J. X.; Chen, X. H.; Wu, W. Y. Moisture Absorption and Release of Profiled Polyester and Cotton Composite Knitted Fabrics. Text. Res. J. 2007, 77, 764–769. DOI: 10.1177/0040517507080696.
  • Cay, A. Modelling of the Drying Behaviour of Regenerated Cellulosic Fabrics. Tekstil Konfeksiyon 2017, 27, 373–381. DOI: 10.1177/0040517516651100.37.
  • Lisyakova, G. V.; Serkov, A. T.; Tsyganov, K. Drying and Conditioning of Viscose Staple Fibre. Fibre Chem. 1987, 18, 444–449. DOI: 10.1007/BF00549410.
  • Brandenburg, N. R.; Harmond, J. Development and Testing of a Forced Air Dryer for Fiber Flax; Agricultural Experiments Station, Oregon State College: Corvallis, OR, 1956.
  • Hui, L.; Rui-Li, W. Experiments and Numerical Simulation of Flow Field Inner the Chain Plate Fiber Dryer. Int. J. Control Autom. 2015, 8, 115–126. DOI: 10.14257/ijca.2015.8.3.14.
  • Uyanik, S.; Baykal, P. Effects of Fiber Types and Fiber Blends Ratio on Vortex Yarn Properties. In 16th AUTEX World Textile Conference, Lajubljana, Slovenia, 2016.
  • Rahman, M.; Al-Farsi, S. Instrumental Texture Profile Analysis (TPA) of Date Flesh as a Function of Moisture Content. J. Food Eng. 2005, 66, 505–511. DOI: 10.1016/j.jfoodeng.2004.04.022.
  • Okubayashi, S.; Griesser, U.; Bechtold, T. A Kinetic Study of Moisture Sorption and Desorption on Lyocell Fibers. Carbohydr. Polym. 2004, 58, 293–299. DOI: 10.1016/j.carbpol.2004.07.004.
  • Yu, X.; Cao, W.; Wei, Y.; Ding, X. Wrinkling Mechanism of Woven Cotton Fabrics during Domestic Tumble Dryer. Dry. Technol. 2018, 36, 1098–1106. DOI: 10.1080/07373937.2017.1382504.
  • Böhner, M.; Barfuss, I.; Heindl, A.; Müller, J. Improving the Airflow Distribution in a Multi-Belt Conveyor Dryer for Spice Plants by Modifications Based on Computational Fluid Dynamics. Biosyst. Eng. 2013, 115, 339–345. DOI: 10.1016/j.biosystemseng.2013.03.012.
  • Hossain, M. A.; Bala, B. K. Thin-Layer Drying Characteristics for Green Chilli. Dry. Technol. 2002, 20, 489–505. DOI: 10.1081/DRT-120002553.
  • Scaar, H.; Franke, G.; Weigler, F.; Delele, M.; Tsotsas, E.; Mellmann, J. Experimental and Numerical Study of the Airflow Distribution in Mixed-Flow Grain Dryers. Dry. Technol. 2016, 34, 595–607. DOI: 10.1080/07373937.2015.1064946.
  • Mercer, D.; Myhara, R. Improving the Operation of a Commercial Mango Dryer. In Using Food Science and Technology to Improve Nutrition and Promote National Development; Robertson, G. L., Lupian, J. R., Eds.; International Union of Food Science & Technology: Toronto, Canada, 2008; Chap. 6, pp. 1–12.
  • Masud, M. H.; Joardder, M. U. H.; Karim, M. A. Effect of Hysteresis Phenomena of Cellular Plant-Based Food Materials on Convective Drying Kinetics. Dry. Technol. 2019, 37, 1313–1320. DOI: 10.1080/07373937.2018.1498508.
  • Jamaleddine, T.; Ray, M. Application of Computational Fluid Dynamics for Simulation of Drying Processes: A Review. Dry. Technol. 2010, 28, 120–154. DOI: 10.1080/07373930903517458.
  • Margaris, D.; Ghiaus, A. Dried Product Quality Improvement by Air Flow Manipulation in Tray Dryers. J. Food Technol. 2006, 75, 542–550. DOI: 10.1016/j.jfoodeng.2005.04.037.
  • Bie, Y.; Li, M.; Guo, X. Y.; Sun, J. G.; Qiu, Y. Experimental Study on Improving the Drying Uniformity in Hot Air Cross-Flow Dryer. IOP Conf. Ser. Earth Environ. Sci. 2017, 93, 012001. DOI: 10.1088/1755-1315/93/1/012001.
  • Fritzell, E.; Melander, O.; Rasmuson, A. The Drying Kinetics and Equilibrium Moisture Content. Dry. Technol. 2009, 27, 993–998. DOI: 10.1080/07373930902904566.
  • Vansteenkiste, D.; Stevens, M.; Van Acker, J. High Temperature Drying of Fresh Swan Popular Wood in an Experimental Convective Dryer. Holz Rah Werkstoff 1997, 55, 307–314. DOI: 10.1007/s001070050235.
  • Sousa, L. H. C. D.; Motta Lima, O. C.; Pereira, N. C. Analysis of Drying Kinetics and Moisture Distribution in Convective Textile Fabric Drying. Dry. Technol. 2006, 24, 485–497. DOI: 10.1080/07373930600611984.
  • Wei, Y.; Gong, R. H.; Ning, L.; Ding, X. Enhancing the Energy Efficiency of Domestic Dryer by Drying Process Optimization. Dry. Technol. 2018, 36, 790–803. DOI: 10.1080/07373937.2017.1356329.
  • Wei, Y.; Su, Z.; Wang, Z.; Yuan, H.; Li, C. Development of an Efficient and Environmental-Friendly Drying Model for Domestic Dryer. J. Text. Inst. 2019. DOI: 10.1080/00405000.2019.1629538.
  • Cay, A.; Tarakçıoğlu, I.; Hepbasli, A. Exergetic Analysis of Textile Convective Drying with Stenters by Subsystem Models: Part 1—Exergetic Modeling and Evaluation. Dry. Technol. 2010, 28, 1359–1368. DOI: 10.1080/07373937.2010.482695.
  • Cay, A.; Tarakçıoğlu, I.; Hepbasli, A. Exergetic Analysis of Textile Convective Drying with Stenters by Subsystem Models: Part 2—Parametric Study on Exergy Analysis. Dry. Technol. 2010, 28, 1368–1376. DOI: 10.1080/07373937.2010.482696.
  • Wei, Y.; Ding, X. Exergy Analysis of Porous Cotton Fabric Drying Process during the Domestic Air Vented Dryer. Indian J. Fibre Text. Res. 2018, 43, 320–329. DOI: 14.139.47.23.
  • Pang, S. Mathematical Modelling of MDF Fibre Drying: Drying Optimization. Dry. Technol. 2000, 18, 1433–1448. DOI: 10.1080/07373930008917786.
  • Pang, S. Improving MDF Fibre Drying Operation by Application of a Mathematical Model. Dry. Technol. 2001, 19, 1789–1805. DOI: 10.1081/DRT-100107273.
  • Schuster, A.; Kozek, M.; Voglauer, B.; Voigt, A. Grey-Box Modelling of a Viscose-Fibre Drying Process. Math. Comput. Model. Dynam. Syst. 2012, 18, 307–325. DOI: 10.1080/13873954.2012.662777.
  • Fyhr, C.; Rasmuson, A. Mathematical Modelling of Pneumatic Conveying Dryer. AIChE J. 1997, 43, 2889–2894. DOI: 10.1002/aic.690431102.
  • Plata, S.; Vicente, W.; Salinas-Vazquez, M. Statistical Analysis of Clothing Drying in a Venting Type Dryer. Dry. Technol. 2019, 37, 1013–1027. DOI: 10.1080/07373937.2018.1481866.
  • Wei, Y.; Hua, J.; Ding, X. A Mathematical Model for Simulating Heat and Moisture Transfer within Porous Cotton Fabric Drying inside the Domestic Air-Vented Drum Dryer. J. Text. Inst. 2017, 108, 1074–1084. DOI: 10.1080/00405000.2016.1219450.
  • Kumar, C.; Millar, G. J.; Karim, M. A. Effective Diffusivity and Evaporation Cooling in Convective Drying of Food Materials. Dry. Technol. 2015, 33, 227–237. DOI: 10.1080/07373937.2014.947512.
  • Khan, M. I. H.; Kumar, C.; Joardder, M. U. H.; Karim, M. A. Determination of Appropriate Effective Diffusivity for Different Food Materials. Dry. Technol. 2017, 35, 335–346. DOI: 10.1080/07373937.2016.1170700.
  • Li, R.; Bond, J.; Douglas, W.; Vera, I. Heat of Desorption of Water from Cellulosic Materials at High Temperature. Dry. Technol. 1995, 13, 999–1012. DOI: 10.1080/07373939508916996.
  • Guiné, R. P. F.; Barroca, M. J. Estimation of Diffusivities and Mass Transfer Coefficients for the Drying of D. Joaquina Pears. In Proceedings of the World Congress on Engineering, London, U.K., July 3–5, 2013.
  • Mujumdar, A. S., Ed. Fundamental Aspects. In Handbook of Industrial Drying, 3rd ed.; Taylor & Francis Group, LLC: Boca Raton, FL, 2006; pp 4–31.
  • Hassan, M. M.; Leighs, S. J. Quick-Dryability of Various Quick-Drying Polyester and Wool Fabrics Assessed by a Novel Method. Dry. Technol. 2017, 35, 585–592. DOI: 10.1080/07373937.2016.1195405.
  • Belhamri, A. Characterization of the First Falling Rate Period during Drying of Porous Material. Dry. Technol. 2003, 7, 1235–1252. DOI: 10.1081/DRT-120023178.
  • Kocaefe, D.; Younsi, R.; Chaudry, B.; Kocaefe, Y. Modeling of Heat and Mass Transfer during High Temperature Treatment of Aspen. Wood Sci. Technol. 2006, 40, 371–391. DOI: 10.1007/s00226-006-0069-6.
  • Reid, R. C.; Praunitz, J. M.; Poling, B. E. The Properties of Gases and Liquids; McGraw-Hill: New York, 1987; p. 587.
  • Levine, J.; Lakshmanan, A.; Peers, Z. Jump Start: Modeling Convective Dryers in Aspen plus V8.0, Aspen Technology, 2013.
  • Sousa, L.; Pereira, N.; Motta Lima, O.; Fonseca, E. Equilibrium Moisture Isotherms of Textiles Materials. Maringá 2001, 23, 1363–1368.
  • Carr, W. W.; Lee, H. S.; Ok, H. Drying of Textile Products. In Handbook of Industrial Drying; Mujumdar, A. S., Ed.; CRC Press: Boca Raton, FL, 2007; pp. 781–792.
  • Lima, A.; Delgado, J.; Neto, S.; Franco, C. Intermittent Drying: Fundamentals, Modeling and Applications. In Drying and Energy Technologies; Delgado, J., Lima, A., Eds.; Springer: Cham, 2016; pp. 19–41.
  • Kowalski, S. J.; Pawłowski, A. Modeling of Kinetics in Stationary and Intermittent Drying. Dry. Technol. 2010, 28, 1023–1031. DOI: 10.1080/07373937.2010.497095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.