Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 4
489
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Energetic and exergetic investigation of a mixed flow dryer: A case study of maize grain drying

, , , &
Pages 466-480 | Received 09 Oct 2019, Accepted 20 Dec 2019, Published online: 10 Jan 2020

References

  • Janas, S.; Boutry, S.; Malumba, P.; Vander Elst, L.; Béra, F. Modelling Dehydration and Quality Degradation of Maize During Fluidized-Bed Drying. J. Food Eng. 2010, 100, 527–534. DOI: 10.1016/j.jfoodeng.2010.05.001.
  • FAO. 2014. Food and Agriculture Organization of the United Nations Statistics Division. www.faostat.fao.org (accessed May, 2019).
  • BBS. 2018. Yearbook of Agricultural Statistics. Statistics and Informatics Division. http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/1b1eb817_9325_4354_a756_3d18412203e2/Yearbook-2016-Final-19-06-2017.pdf (accessed May, 2019).
  • Azadbakht, M.; Torshizi, M. V.; Noshad, F.; Rokhbin, A. Application of Artificial Neural Network Method for Prediction of Osmotic Pretreatment Based on the Energy and Exergy Analyses in Microwave Drying of Orange Slices. Energy 2018, 165, 836–845. DOI: 10.1016/j.energy.2018.10.017.
  • Sarker, M. S. H.; Ibrahim, M. N.; Aziz, N. A.; Punan, M. S. Energy and Exergy Analysis of Industrial Fluidized Bed Drying of Paddy. Energy 2015, 84, 131–138. DOI: 10.1016/j.energy.2015.02.064.
  • Ranjbaran, M.; Zare, D. Simulation of Energetic-and Exergetic Performance of Microwave-Assisted Fluidized Bed Drying of Soybeans. Energy 2013, 59, 484–493. DOI: 10.1016/j.energy.2013.06.057.
  • Firouzi, S.; Alizadeh, M. R.; Haghtalab, D. Energy Consumption and Rice Milling Quality upon Drying Paddy with a Newly-Designed Horizontal Rotary Dryer. Energy 2017, 119, 629–636. DOI: 10.1016/j.energy.2016.11.026.
  • Jafari, H.; Kalantari, D.; Azadbakht, M. Energy Consumption and Qualitative Evaluation of a Continuous Band Microwave Dryer for Rice Paddy Drying. Energy 2018, 142, 647–654. DOI: 10.1016/j.energy.2017.10.065.
  • Nimmol, C.; Devahastin, S. Evaluation of Performance and Energy Consumption of an Impinging Stream Dryer for Paddy. Appl. Therm. Eng. 2010, 30, 2204–2212. DOI: 10.1016/j.applthermaleng.2010.05.034.
  • Sarker, M. S. H.; Ibrahim, M. N.; Aziz, N. A.; Salleh, P. M. Energy and Rice Quality Aspects during Drying of Freshly Harvested Paddy with Industrial Inclined Bed Dryer. Energy Convers. Manage. 2014, 77, 389–395. DOI: 10.1016/j.enconman.2013.09.038.
  • Brito, R. C.; Béttega, R.; Freire, J. T. Energy Analysis of Intermittent Drying in the Spouted Bed. Dry. Technol. 2019, 37, 1–13. DOI: 10.1016/j.cep.2018.05.014.
  • Abdoli, B.; Zare, D.; Jafari, A.; Chen, G. Evaluation of the Air-Borne Ultrasound on Fluidized Bed Drying of Shelled Corn: Effectiveness, Grain Quality, and Energy Consumption. Dry. Technol. 2018, 36, 1749–1766. DOI: 10.1080/07373937.2018.1423568.
  • Dincer, I.; Rosen, M. A. Thermodynamic Aspects of Renewables and Sustainable Development. Renew. Sustain. Energy Rev. 2005, 9, 169–189. DOI: 10.1016/j.rser.2004.02.002.
  • Motevali, A.; Minaei, S.; Khoshtaghaza, M. H.; Amirnejat, H. Comparison of Energy Consumption and Specific Energy Requirements of Different Methods for Drying Mushroom Slices. Energy 2011, 36, 6433–6441. DOI: 10.1016/j.energy.2011.09.024.
  • Soysal, Y.; Öztekin, S.; Eren, Ö. Microwave Drying of Parsley: Modelling, Kinetics, and Energy Aspects. Biosyst. Eng. 2006, 93, 403–413. DOI: 10.1016/j.biosystemseng.2006.01.017.
  • Sharma, G. P.; Prasad, S. Specific Energy Consumption in Microwave Drying of Garlic Cloves. Energy 2006, 31, 1921–1926. DOI: 10.1016/j.energy.2005.08.006.
  • Aghbashlo, M.; Kianmehr, M. H.; Samimi-Akhijahani, H. Influence of Drying Conditions on the Effective Moisture Diffusivity, Energy of Activation and Energy Consumption during the Thin-Layer Drying of Berberis Fruit (Berberidaceae). Energy Convers. Manage. 2008, 49, 2865–2871. DOI: 10.1016/j.enconman.2008.03.009.
  • Aktaş, M.; Khanlari, A.; Amini, A.; Şevik, S. Performance Analysis of Heat Pump and Infrared–Heat Pump Drying of Grated Carrot Using Energy–Exergy Methodology. Energy Convers. Manage. 2017, 132, 327–338. DOI: 10.1016/j.enconman.2016.11.027.
  • Aghbashlo, M.; Tabatabaei, M.; Soltanian, S.; Ghanavati, H.; Dadak, A. Comprehensive Exergoeconomic Analysis of a Municipal Solid Waste Digestion Plant Equipped with a Biogas Genset. Waste Manage. 2019, 87, 485–498. DOI: 10.1016/j.wasman.2019.02.029.
  • Aghbashlo, M.; Rosen, M. A. Exergoeconoenvironmental Analysis as a New Concept for Developing Thermodynamically, Economically, and Environmentally Sound Energy Conversion Systems. J. Clean. Prod. 2018, 187, 190–204. DOI: 10.1016/j.jclepro.2018.03.214.
  • Folayan, J. A.; Osuolale, F. N.; Anawe, P. A. L. Data on Exergy and Exergy Analyses of Drying Process of Onion in a Batch Dryer. Data Brief. 2018, 21, 1784–1793. DOI: 10.1016/j.dib.2018.10.132.
  • Amantéa, R. P.; Fortes, M.; Ferreira, W. R.; Santos, G. T. Energy and Exergy Efficiencies as Design Criteria for Grain Dryers. Dry. Technol. 2018, 36, 491–507. DOI: 10.1080/07373937.2017.1409232.
  • Yogendrasasidhar, D.; Setty, Y. P. Drying Kinetics, Exergy and Energy Analyses of Kodo Millet Grains and Fenugreek Seeds Using Wall Heated Fluidized Bed Dryer. Energy 2018, 151, 799–811. DOI: 10.1016/j.energy.2018.03.089.
  • Syahrul, S.; Dincer, I.; Hamdullahpur, F. Thermodynamic Modeling of Fluidized Bed Drying of Moist Particles. Int. J. Therm. Sci. 2003, 42, 691–701. DOI: 10.1016/S1290-0729(03)00035-8.
  • Skoneczna-Łuczków, J.; Ciesielczyk, W. Exergetic Analysis for a Complete Node of Fluidised-Bed Drying of Poppy Seeds. Chem. Process Eng. 2015, 36, 437–447. DOI: 10.1515/cpe-2015-0031.
  • Xiang, F.; Wang, L.; Yue, X. F. Exergy Analysis and Experimental Study of a Vehicle-Mounted Heat Pump-Assisted Fluidization Drying System Driven by a Diesel Generator. Dry. Technol. 2011, 29, 1313–1324. DOI: 10.1080/07373937.2011.592044.
  • Pabis, S.; Jayas, D. S.; Cenkowski, S. Grain Drying: Theory and Practice; John Wiley & Sons: New York, USA, 1998.
  • Mokhtarian, M.; Tavakolipour, H.; Kalbasi-Ashtari, A. Energy and Exergy Analysis in Solar Drying of Pistachio with Air Recycling System. Dry. Technol. 2016, 34, 1484–1500. DOI: 10.1080/07373937.2015.1129499.
  • Azadbakht, M.; Aghili, H.; Ziaratban, A.; Torshizi, M. V. Application of Artificial Neural Network Method to Exergy and Energy Analyses of Fluidized Bed Dryer for Potato Cubes. Energy 2017, 120, 947–958. DOI: 10.1016/j.energy.2016.12.006.
  • Nazghelichi, T.; Aghbashlo, M.; Kianmehr, M. H.; Omid, M. Prediction of Energy and Exergy of Carrot Cubes in a Fluidized Bed Dryer by Artificial Neural Networks. Dry. Technol. 2011, 29, 295–307. DOI: 10.1080/07373937.2010.494237.
  • Liu, Z.-L.; Bai, J. W.; Wang, S. X.; Meng, J. S.; Wang, H.; Yu, X. L.; Gao, Z. J.; Xiao, H. W. Prediction of Energy and Exergy of Mushroom Slices Drying in Hot Air Impingement Dryer by Artificial Neural Network. Dry. Technol. 2019, 1–12. DOI: 10.1080/07373937.2019.1607873.
  • Aghbashlo, M. Exergetic Simulation of a Combined Infrared-Convective Drying Process. Heat Mass Transfer. 2016, 52, 829–844. DOI: 10.1007/s00231-015-1594-3.
  • Zohrabi, S.; Seiiedlou, S. S.; Aghbashlo, M.; Scaar, H.; Mellmann, J. Enhancing the Exergetic Performance of a Pilot-Scale Convective Dryer by Exhaust Air Recirculation. Dry. Technol. 2019, 1–16. DOI: 10.1080/07373937.2019.1587617.
  • Dincer, I.; Sahin, A. Z. A New Model for Thermodynamic Analysis of a Drying Process. Int. J. Heat Mass Transfer. 2004, 47, 645–652. DOI: 10.1016/j.ijheatmasstransfer.2003.08.013.
  • Motevali, A.; Minaei, S.; Banakar, A.; Ghobadian, B.; Khoshtaghaza, M. H. Comparison of Energy Parameters in Various Dryers. Energy Convers. Manage. 2014, 87, 711–725. DOI: 10.1016/j.enconman.2014.07.012.
  • Ghasemkhani, H.; Keyhani, A.; Aghbashlo, M.; Rafiee, S.; Mujumdar, A. S. Improving Exergetic Performance Parameters of a Rotating-Tray Air Dryer via a Simple Heat Exchanger. Appl. Therm. Eng. 2016, 94, 13–23. DOI: 10.1016/j.applthermaleng.2015.10.114.
  • Brooker, D. B. Mathematical Model of the Psychometric Chart. Trans. ASAE 1967, 10, 0558–0560.
  • Akbulut, A.; Durmuş, A. Energy and Exergy Analyses of Thin Layer Drying of Mulberry in a Forced Solar Dryer. Energy 2010, 35, 1754–1763. DOI: 10.1016/j.energy.2009.12.028.
  • Aghbashlo, M.; Kianmehr, M. H.; Arabhosseini, A. Performance Analysis of Drying of Carrot Slices in a Semi-Industrial Continuous Band Dryer. J. Food Eng. 2009, 91, 99–108. DOI: 10.1016/j.jfoodeng.2008.08.020.
  • Sheikhshoaei, H.; Dowlati, M.; Aghbashlo, M.; Rosen, M. A. Exergy Analysis of a Pistachio Roasting System. Dry. Technol. 2019, 1–19. DOI: 10.1080/07373937.2019.1649276.
  • Yamamura, M.; Ohara, K.; Mawatari, Y.; Kage, H. Measuring the Drying Rate of Liquid Film Coatings Using Heat Flux Method. Dry. Technol. 2009, 27, 817–820. DOI: 10.1080/07373930902901687.
  • Ondier, G. O.; Siebenmorgen, T. J.; Mauromoustakos, A. Low-Temperature, Low-Relative Humidity Drying of Rough Rice. J. Food Eng. 2010, 100, 545–550. DOI: 10.1016/j.jfoodeng.2010.05.004.
  • Sarker, M. S. H.; Ibrahim, M. N.; Aziz, N. A.; Punan, M. S. Drying Kinetics, Energy Consumption, and Quality of Paddy (MAR-219) During Drying by the Industrial Inclined Bed Dryer with or without the Fluidized Bed Dryer. Dry. Technol. 2013, 31, 286–294. DOI: 10.1080/07373937.2012.728270.
  • Uddin, Z.; Suppakul, P.; Boonsupthip, W. Effect of Air Temperature and Velocity on Moisture Diffusivity in Relation to Physical and Sensory Quality of Dried Pumpkin Seeds. Dry. Technol. 2016, 34, 1423–1433. DOI: 10.1080/07373937.2015.1119840.
  • Inprasit, C.; Noomhorm, A. Effect of Drying Air Temperature and Grain Temperature of Different Types of Dryer and Operation on Rice Quality. Dry. Technol. 2001, 19, 389–404. DOI: 10.1081/DRT-100102912.
  • Sarker, M. S. H.; Ibrahim, M. N.; Aziz, N. A.; Punan, M. S. Application of Simulation in Determining Suitable Operating Parameters for Industrial Scale Fluidized Bed Dryer during Drying of High Impurity Moist Paddy. J. Stored Products Res. 2015, 61, 76–84. DOI: 10.1016/j.jspr.2014.12.004.
  • Aviara, N. A.; Onuoha, L. N.; Falola, O. E.; Igbeka, J. C. Energy and Exergy Analyses of Native Cassava Starch Drying in a Tray Dryer. Energy 2014, 73, 809–817. DOI: 10.1016/j.energy.2014.06.087.
  • Akpinar, E. K.; Midilli, A.; Bicer, Y. Energy and Exergy of Potato Drying Process via Cyclone Type Dryer. Energy Convers. Manage. 2005, 46, 2530–2552.
  • Erbay, Z.; Icier, F. Energy and Exergy Analyses on Drying of Olive Leaves (Olea europaea L.) in Tray Drier. J. Food Process Eng. 2011, 34, 2105–2123. DOI: 10.1111/j.1745-4530.2009.00505.x.
  • Şevik, S.; Aktaş, M.; Doğan, H.; Koçak, S. Mushroom Drying with Solar Assisted Heat Pump System. Energy Convers. Manage. 2013, 72, 171–178. DOI: 10.1016/j.enconman.2012.09.035.
  • Mondal, M. H. T.; Shiplu, K. S. P.; Sen, K. P.; Roy, J.; Sarker, M. S. H. Performance Evaluation of Small Scale Energy Efficient Mixed Flow Dryer for Drying of High Moisture Paddy. Dry. Technol. 2019, 37, 1541–1550. DOI: 10.1080/07373937.2018.1518914.
  • Kudra, T. Energy Aspects in Drying. Dry. Technol. 2004, 22, 917–932. DOI: 10.1081/DRT-120038572.
  • Syahrul, S.; Hamdullahpur, F.; Dincer, I. Dincer, I. Exergy Analysis of Fluidized Bed Drying of Moist Particles. Exergy Int. J. 2002, 2, 87–98. DOI: 10.1016/S1164-0235(01)00044-9.
  • Chowdhury, M. M. I.; Bala, B. K.; Haque, M. A. Energy and Exergy Analysis of the Solar Drying of Jackfruit Leather. Biosyst. Eng. 2011, 110, 222–229. DOI: 10.1016/j.biosystemseng.2011.08.011.
  • Fudholi, A.; Sopian, K.; Othman, M. Y.; Ruslan, M. H.; Bakhtyar, B. Energy Analysis and Improvement Potential of Finned Double-Pass Solar Collector. Energy Convers. Manage. 2013, 75, 234–240. DOI: 10.1016/j.enconman.2013.06.021.
  • Dissanayake, T. M. R.; Bandara, D. M. S. P.; Rathnayake, H. M. A. P.; Thilakarathne, B. M. K. S.; Wijerathne, D. B. T. Development of Mobile Dryer for Freshly Harvested Paddy. Proc. Food Sci. 2016, 6, 78–81. DOI: 10.1016/j.profoo.2016.02.017.
  • Çolak, N.; Kuzgunkaya, E.; Hepbasli, A. Exergetic Assessment of Drying of Mint Leaves in a Heat Pump Dryer. J. Food Process Eng. 2008, 31, 281–298. DOI: 10.1111/j.1745-4530.2007.00155.x.
  • Aghbashlo, M.; Mandegari, M.; Tabatabaei, M.; Farzad, S.; Soufiyan, M. M.; Görgens, J. F. Exergy Analysis of a Lignocellulosic-Based Biorefinery Annexed to a Sugarcane Mill for Simultaneous Lactic Acid and Electricity Production. Energy 2018, 149, 623–638. DOI: 10.1016/j.energy.2018.02.063.
  • Afzali, F.; Darvishi, H.; Behroozi-Khazaei, N. Optimizing Exergetic Performance of a Continuous Conveyor Infrared-Hot Air Dryer with Air Recycling System. Appl. Therm. Eng. 2019, 154, 358–367. DOI: 10.1016/j.applthermaleng.2019.03.096.
  • Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. Energy and Exergy Analyses of the Spray Drying Process of Fish Oil Microencapsulation. Biosyst. Eng. 2012, 111, 229–241. DOI: 10.1016/j.biosystemseng.2011.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.