Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 4
785
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins

, , , , &
Pages 495-506 | Received 12 Oct 2019, Accepted 22 Dec 2019, Published online: 07 Jan 2020

References

  • Kedage, V. V.; Tilak, J. C.; Dixit, G. B.; Devasagayam, T. P.; Mhatre, M. A Study of Antioxidant Properties of Some Varieties of Grapes (Vitis vinifera L.). Crit. Rev. Food Sci. 2007, 47, 175–185. DOI: 10.1080/10408390600634598.
  • Breksa, A. P. III; Takeoka, G. R.; Hidalgo, M. B.; Vilches, A.; Vasse, J.; Ramming, D. W. Antioxidant Activity and Phenolic Content of 16 Raisin Grape (Vitis vinifera L.) Cultivars and Selections. Food Chem. 2010, 121, 740–745. DOI: 10.1016/j.foodchem.2010.01.029.
  • Zemni, H.; Sghaier, A.; Khiari, R.; Chebil, S.; Ismail, H. B.; Nefzaoui, R.; Hamdi, Z.; Lasram, S. Physicochemical, Phytochemical and Mycological Characteristics of Italia Muscat Raisins Obtained Using Different Pre-Treatments and Drying Techniques. Food Bioprocess Technol. 2017, 10, 479–490. DOI: 10.1007/s11947-016-1837-4.
  • USDA. 2017. Statistical Data. https://apps.fas.usda.gov/psdonline/circulars/Raisins.pdf (accessed Oct 20, 2018).
  • Wang, D.; Cai, J.; Zhu, B. Q.; Wu, G. F.; Duan, C. Q.; Chen, G.; Shi, Y. Study of Free and Glycosidically Bound Volatile Compounds in Air-Dried Raisins from Three Seedless Grape Varieties Using HS–SPME with GC–MS. Food Chem. 2015, 177, 346–353. DOI: 10.1016/j.foodchem.2015.01.018.
  • Cheng, Z.; Zhang, X.; Liu, X.; Wang, S.; Ma, L. Classification of Different Dried Vine Fruit Varieties in China by HS-SPME-GC-MS Combined with Chemometrics. Food Anal. Methods 2017, 10, 2856–2867. DOI: 10.1007/s12161-017-0848-8.
  • Adiletta, G.; Russo, P.; Senadeera, W.; Di Matteo, M. Drying Characteristics and Quality of Grape under Physical Pretreatment. J. Food Eng. 2016, 172, 9–18. DOI: 10.1016/j.jfoodeng.2015.06.031.
  • de Lerma, N. L.; Moreno, J.; Peinado, R. A. Determination of the Optimum Sun-Drying Time for Vitis vinifera L. cv. Tempranillo Grapes by e-Nose Analysis and Characterization of Their Volatile Composition. Food Bioprocess Technol. 2014, 7, 732–740. DOI: 10.1007/s11947-013-1086-8.
  • Toğrul, İ. T.; Pehlivan, D. Modelling of Thin Layer Drying Kinetics of Some Fruits under Open-Air Sun Drying Process. J. Food Eng. 2004, 65, 413–425. DOI: 10.1016/j.jfoodeng.2004.02.001.
  • Pangavhane, D. R.; Sawhney, R. L. Review of Research and Development Work on Solar Dryers for Grape Drying. Energ. Convers. Manage. 2002, 43, 45–61. DOI: 10.1016/S0196-8904(01)00006-1.
  • Jairaj, K. S.; Singh, S. P.; Srikant, K. A Review of Solar Dryers Developed for Grape Drying. Sol. Energy 2009, 83, 1698–1712. DOI: 10.1016/j.solener.2009.06.008.
  • Doymaz, I. Drying Kinetics of Black Grapes Treated with Different Solutions. J. Food Eng. 2006, 76, 212–217. DOI: 10.1016/j.jfoodeng.2005.05.009.
  • Fang, Y. L.; Zhang, A.; Wang, H.; Li, H.; Zhang, Z. W.; Chen, S. X.; Luan, L. Y. Health Risk Assessment of Trace Elements in Chinese Raisins Produced in Xinjiang Province. Food Control 2010, 21, 732–739. DOI: 10.1016/j.foodcont.2009.10.018.
  • Bai, J. W.; Sun, D. W.; Xiao, H. W.; Mujumdar, A. S.; Gao, Z. J. Novel High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment Enhances Drying Kinetics and Color Attributes of Seedless Grapes. Innov. Food Sci. Emerg. Technol. 2013, 20, 230–237. DOI: 10.1016/j.ifset.2013.08.011.
  • Wang, Y.; Tao, H.; Yang, J.; An, K.; Ding, S.; Zhao, D.; Wang, Z. Effect of Carbonic Maceration on Infrared Drying Kinetics and Raisin Qualities of Red Globe (Vitis vinifera L.): A New Pre-Treatment Technology before Drying. Innov. Food Sci. Emerg. Technol. 2014, 26, 462–468. DOI: 10.1016/j.ifset.2014.09.001.
  • Wang, J.; Law, C. L.; Nema, P. K.; Zhao, J. H.; Liu, Z. L.; Deng, L. Z.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138. DOI: 10.1016/j.jfoodeng.2018.01.002.
  • Xie, L.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Dai, J. W.; Du, Z. L.; Xiao, H. W.; Liu, Y.; Gao, Z. J. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry: Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI: 10.1016/j.fbp.2017.01.012.
  • Xie, L.; Zheng, Z. A.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Zhang, Q.; Ma, Q.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Pulsed Vacuum Drying (PVD) of Wolfberry: Drying Kinetics and Quality Attributes. Dry. Technol. 2018, 36, 1501–1514. DOI: 10.1080/07373937.2017.1414055.
  • Xie, L.; Mujumdar, A. S.; Zhang, Q.; Wang, J.; Liu, S.; Deng, L.; Wang, D.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Pulsed Vacuum Drying of Wolfberry: Effects of Infrared Radiation Heating and Electronic Panel Contact Heating Methods on Drying Kinetics, Color Profile, and Volatile Compounds. Dry. Technol. 2017, 35, 1312–1326. DOI: 10.1080/07373937.2017.1319854.
  • Wang, J.; Bai, T. Y.; Wang, D.; Fang, X. M.; Xue, L. Y.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber Officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2019, 37, 301–311. DOI: 10.1080/07373937.2017.1423325.
  • Deng, L. Z.; Yang, X. H.; Mujumdar, A. S.; Zhao, J. H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z. J.; Xiao, H. W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. DOI: 10.1080/07373937.2017.1361439.
  • Wang, J.; Mu, W. S.; Fang, X. M.; Mujumdar, A. S.; Yang, X. H.; Xue, L. Y.; Xie, L.; Xiao, H. H.; Gao, Z. J.; Zhang, Q. Pulsed Vacuum Drying of Thompson Seedless Grape: Effects of Berry Ripeness on Physicochemical Properties and Drying Characteristic. Food Bioprod. Process. 2017, 106, 117–126. DOI: 10.1016/j.fbp.2017.09.003.
  • USDA. 2017. Statistical Data. https://ndb.nal.usda.gov/ndb/ (accessed Oct 20, 2018).
  • Liu, J. J.; Yang, W. B.; Liu, W. X.; Lu, S. Z.; Luo, W.; Lu, C. S.; Peng, Y. B. Grape Dry-Promoter. Chinese Patent No. ZL 92 1 02736.2, April 11, 1992.
  • Angulo, O.; Fidelibus, M. W.; Heymann, H. Grape Cultivar and Drying Method Affect Sensory Characteristics and Consumer Preference of Raisins. J. Sci. Food Agric. 2007, 87, 865–870. DOI: 10.1002/jsfa.2790.
  • Wang, J.; Fang, X. M.; Mujumdar, A. S.; Qian, J. Y.; Zhang, Q.; Yang, X. H.; Liu, Y. H.; Gao, Z. J.; Xiao, H. W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment on Drying Characteristic and Quality Attributes of Red Pepper (Capsicum annuum L.). Food Chem. 2017, 220, 145–152. DOI: 10.1016/j.foodchem.2016.09.200.
  • Deng, L. Z.; Pan, Z.; Zhang, Q.; Liu, Z. L.; Zhang, Y.; Meng, J. S.; Gao, Z. J.; Xiao, H. W. Effects of Ripening Stage on Physicochemical Properties, Drying Kinetics, Pectin Polysaccharides Contents and Nanostructure of Apricots. Carbohydr. Polym. 2019, 222, 1–8. DOI: 10.1016/j.carbpol.2019.114980.
  • Rolle, L.; Torchio, F.; Giacosa, S.; Segade, S. R. Berry Density and Size as Factors Related to the Physicochemical Characteristics of Muscat Hamburg Table Grapes (Vitis vinifera L.). Food Chem. 2015, 173, 105–113. DOI: 10.1016/j.foodchem.2014.10.033.
  • Rajkumar, G.; Shanmugam, S.; Galvâo, M. S.; Neta, M. T. S. L.; Sandes, R. D. D.; Mujumdar, A. S.; Narain, N. Comparative Evaluation of Physical Properties and Aroma Profile of Carrot Slices Subjected to Hot Air and Freeze Drying. Dry. Technol. 2017, 35, 699–708. DOI: 10.1080/07373937.2016.1206925.
  • Rababah, T. M.; Al-U’datt, M.; Almajwal, A.; Brewer, S.; Feng, H.; Al-Mahasneh, M.; Ereifej, K.; Yang, W. Evaluation of the Nutraceutical, Physiochemical and Sensory Properties of Raisin Jam. J. Food Sci. 2012, 77, C609–C613. DOI: 10.1111/j.1750-3841.2012.02708.x.
  • Esmaiili, M.; Sotudeh-Gharebagh, R.; Cronin, K.; Mousavi, M. A. E.; Rezazadeh, G. Grape Drying: A Review. Food Rev. Int. 2007, 23, 257–280. DOI: 10.1080/87559120701418335.
  • Bezerra, T. S.; Pereira, C. G.; Prado, M. E. T.; de Barros Vilas Boas, E. V.; Resende, J. V. D. Induction of Crystallization Influences the Retention of Volatile Compounds in Freeze-Dried Marolo Pulp. Dry. Technol. 2018, 36, 1250–1262. DOI: 10.1080/07373937.2017.1399275.
  • Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the Aromatic Composition of the Vitis vinifera Grape Muscat Hamburg during Ripening. Food Chem. 2009, 114, 420–428. DOI: 10.1016/j.foodchem.2008.09.060.
  • Lampi, A. M.; Damerau, A.; Li, J.; Moisio, T.; Partanen, R.; Forssell, P.; Piironen, V. Changes in Lipids and Volatile Compounds of Oat Flours and Extrudates during Processing and Storage. J. Cereal Sci. 2015, 62, 102–109.
  • Wang, D.; Duan, C. Q.; Shi, Y.; Zhu, B. Q.; Hu, J.; Wang, J. Free and Glycosidically Bound Volatile Compounds in Sun-Dried Raisins Made from Different Fragrance Intensities Grape Varieties Using a Validated HS-SPME with GC–MS Method. Food Chem. 2017, 228, 125–135. DOI: 10.1016/j.foodchem.2017.01.153.
  • Jirovetz, L.; Smith, D.; Buchbauer, G. Aroma Compound Analysis of Eruca sativa (Brassicaceae) SPME Headspace Leaf Samples Using GC, GC-MS, and Olfactometry. J. Agric. Food Chem. 2002, 50, 4643–4646. DOI: 10.1021/jf020129n.
  • Whitfield, F. B.; Mottram, D. S. Volatiles from Interactions of Maillard Reactions and Lipids. Crit. Rev. Food Sci. Nutr. 1992, 31, 1–58. DOI: 10.1080/10408399209527560.
  • Fratini, G.; Lois, S.; Pazos, M.; Parisi, G.; Medina, I. Volatile Profile of Atlantic Shellfish Species by HS-SPME GC/MS. Food Res. Int. 2012, 48, 856–865. DOI: 10.1016/j.foodres.2012.06.033.
  • Wu, X. F.; Zhang, M.; Bhandari, B.; Li, Z. Effect of Blanching on Volatile Compounds and Structural Aspects of Cordyceps militaris Dried by Microwave-Assisted Pulse-Spouted Bed Freeze-Drying (MPSFD). Dry. Technol. 2019, 37, 13–25.
  • Pino, J. A.; Mesa, J.; Muñoz, Y.; Martí, M. P.; Marbot, R. Volatile Components from Mango (Mangifera indica L.) Cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. DOI: 10.1021/jf0402633.
  • Cho, I. H.; Lee, S.; Jun, H. R.; Roh, H. J.; Kim, Y. S. Comparison of Volatile Maillard Reaction Products from Tagatose and Other Reducing Sugars with Amino Acids. Food Sci. Biotechnol. 2010, 19, 431–438. DOI: 10.1007/s10068-010-0061-7.
  • Russo, F.; Caporaso, N.; Paduano, A.; Sacchi, R. Characterisation of Volatile Compounds in Cilento (Italy) Figs (Ficus carica L.) cv. Dottato as Affected by the Drying Process. Int. J. Food Prop. 2017, 20, 1366–1376. DOI: 10.1080/10942912.2017.1344991.
  • Politowicz, J.; Lech, K.; Sánchez-Rodríguez, L.; Figiel, A.; Szumny, A.; Grubor, M.; Carbonell-Barrachina, Á. A. Volatile Composition and Sensory Profile of Oyster Mushroom as Affected by Drying Method. Dry. Technol. 2018, 36, 685–696. DOI: 10.1080/07373937.2016.1274903.
  • Jeyaprakash, S.; Frank, D. C.; Driscoll, R. H. Influence of Heat Pump Drying on Tomato Flavor. Dry. Technol. 2016, 34, 1709–1718. DOI: 10.1080/07373937.2016.1174937.
  • Huang, B.; Wang, G.; Chu, Z.; Qin, L. Effect of Oven Drying, Microwave Drying, and Silica Gel Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Dry. Technol. 2012, 30, 248–255. DOI: 10.1080/07373937.2011.634976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.