Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 4
370
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Fluidized bed and microwave-assisted fluidized bed drying of seed grade soybean

, &
Pages 507-527 | Received 21 Jun 2019, Accepted 23 Dec 2019, Published online: 02 Jan 2020

References

  • Canadian Food Inspection Agency, Canada. Schedule I to the Seeds Regulations, 2007.
  • Felipe, C.; Barrozo, M. Drying of Soybean Seeds in a Concurrent Moving Bed: Heat and Mass Transfer and Quality Analysis. Drying Technol. 2003, 21, 439–456. DOI: 10.1081/DRT-120018456.
  • Barrozo, M.; Felipe, C.; Sartori, D.; Freire, J. Quality of Soybean Seeds Undergoing Moving Bed Drying: Countercurrent and Crosscurrent Flows. Drying Technol. 2006, 24, 415–422. DOI: 10.1080/07373930600611638.
  • Souza, G. F.; Miranda, R. F.; Barrozo, M. A. Soybean (Glycine max L. Merrill) Seed Drying in Fixed Bed: Process Heterogeneity and Seed Quality. Drying Technol. 2015, 33, 1779–1787. DOI: 10.1080/07373937.2015.1039542.
  • Fumagalli, F.; Freire, J. Analysis of the Drying Kinetics of Brachiaria brizantha (Hochst. Stapf) Grass Seeds at Different Drying Modes. Drying Technol. 2007, 25, 1437–1444. DOI: 10.1080/07373930701536734.
  • Nair, G. R.; Li, Z.; Gariepy, Y.; Raghavan, V. Microwave Drying of Corn (Zea mays L. ssp.) for the Seed Industry. Drying Technol. 2011, 29, 1291–1296. DOI: 10.1080/07373937.2011.591715.
  • Reddy, M. B.; Raghavan, G.; Kushalappa, A.; Paulitz, T. Effect of Microwave Treatment on Quality of Wheat Seeds Infected with Fusarium graminearum. J. Agric. Eng. Res. 1998, 71, 113–117. DOI: 10.1006/jaer.1998.0305.
  • Łupińska, A.; Kozioł, A.; Araszkiewicz, M.; Łupiński, M. The Changes of Quality in Rapeseeds during Microwave Drying. Drying Technol. 2009, 27, 857–862. DOI: 10.1080/07373930903021717.
  • Jittanit, W.; Srzednicki, G.; Driscoll, R. H. Comparison between Fluidized Bed and Spouted Bed Drying for Seeds. Drying Technol. 2013, 31, 52–56. DOI: 10.1080/07373937.2012.714827.
  • Li, Z.; Kobayashi, N.; Nishimura, A.; Hasatani, M. Sorption Drying of Soybean Seeds with Silica Gel. I. Hydrodynamics of a Fluidized Bed Dryer. Drying Technol. 2002, 20, 1193–1213. DOI: 10.1081/DRT-120004047.
  • Amiri Chayjan, R.; Kaveh, M. Physical Parameters and Kinetic Modeling of Fix and Fluid Bed Drying of Terebinth Seeds. J. Food Process. Preserv. 2014, 38, 1307–1320. DOI: 10.1111/jfpp.12092.
  • Chayjan, R. A.; Salari, K.; Abedi, Q.; Sabziparvar, A. A. Modeling Moisture Diffusivity, Activation Energy and Specific Energy Consumption of Squash Seeds in a Semi Fluidized and Fluidized Bed Drying. J. Food Sci. Technol. 2013, 50, 667–677. DOI: 10.1007/s13197-011-0399-8.
  • Reyes, A.; Campos, C.; Vega, R. Drying of Turnip Seeds with Microwaves in Fixed and Pulsed Fluidized Beds. Drying Technol. 2006, 24, 1469–1480. DOI: 10.1080/07373930600952818.
  • Clemente, G.; Sanjuán, N.; Cárcel, J. A.; Mulet, A. Influence of Temperature, Air Velocity, and Ultrasound Application on Drying Kinetics of Grape Seeds. Drying Technol. 2014, 32, 68–76. DOI: 10.1080/07373937.2013.811592.
  • Standard, A. Moisture Measurement-Unground Grain and Seeds. Am. Soc. Agric. Eng. 2001, 567–568.
  • Kardum, J. P.; Sander, A.; Skansi, D. Comparison of Convective, Vacuum, and Microwave Drying Chlorpropamide. Drying Technol. 2001, 19, 167–183. DOI: 10.1081/DRT-100001359.
  • Prabhanjan, D.; Ramaswamy, H.; Raghavan, G. V. Microwave-Assisted Convective Air Drying of Thin Layer Carrots. J. Food Eng. 1995, 25, 283–293. DOI: 10.1016/0260-8774(94)00031-4.
  • Sharma, G.; Prasad, S. Drying of Garlic (Allium sativum) Cloves by Microwave–Hot Air Combination. J. Food Eng. 2001, 50, 99–105. DOI: 10.1016/S0260-8774(00)00200-4.
  • Giri, S.; Prasad, S. Drying Kinetics and Rehydration Characteristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. J. Food Eng. 2007, 78, 512–521. DOI: 10.1016/j.jfoodeng.2005.10.021.
  • Dadalı, G.; Apar, D. K.; Özbek, B. Estimation of Effective Moisture Diffusivity of Okra for Microwave Drying. Drying Technol. 2007, 25, 1445–1450. DOI: 10.1080/07373930701536767.
  • Ranjbaran, M.; Zare, D. A New Approach for Modeling of Hot Air-Microwave Thin Layer Drying of Soybean. Electron. J. Polish Agric. Univ. 2012, 15, 795–810.
  • Jayatunga, G.; Amarasinghe, B. Drying Kinetics, Quality and Moisture Diffusivity of Spouted Bed Dried Sri Lankan Black Pepper. J. Food Eng. 2019, 263, 38–45. DOI: 10.1016/j.jfoodeng.2019.05.023.
  • Doymaz, I.; Pala, M. The Thin-Layer Drying Characteristics of Corn. J. Food Eng. 2003, 60, 125–130. DOI: 10.1016/S0260-8774(03)00025-6.
  • Marcos Filho, J. Seed Vigor Testing: An Overview of the Past, Present and Future Perspective. Sci. Agric. 2015, 72, 363–374. DOI: 10.1590/0103-9016-2015-0007.
  • Sheidaei, S.; Abad, H. H. S.; Hamidi, A.; Nour, G.; Mohammadi, A. M. Relationship between Laboratory Indices of Soybean Seed Vigor with Field Emergence and Yield. Int. J. Biosci. 2014, 5, 281–287.
  • Senda, M.; Yamaguchi, N.; Hiraoka, M.; Kawada, S.; Iiyoshi, R.; Yamashita, K.; Sonoki, T.; Maeda, H.; Kawasaki, M. Accumulation of Proanthocyanidins and/or Lignin Deposition in Buff-Pigmented Soybean Seed Coats May Lead to Frequent Defective Cracking. Planta 2017, 245, 659–670. DOI: 10.1007/s00425-016-2638-8.
  • Mohamed-Yasseen, Y.; Barringer, S. A.; Splittstoesser, W. E.; Costanza, S. The Role of Seed Coats in Seed Viability. Bot. Rev. 1994, 60, 426–439. DOI: 10.1007/BF02857926.
  • Sharma, G.; Prasad, S. Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-Convective Drying. J. Food Eng. 2004, 65, 609–617. DOI: 10.1016/j.jfoodeng.2004.02.027.
  • Mondo, V. H. V.; Nascente, A. S.; Neto, C.; Oliveira, M. Common Bean Seed Vigor Affecting Crop Grain Yield. J. Seed Sci. 2016, 38, 365–370. DOI: 10.1590/2317-1545v38n4166814.
  • Loeffler, T.; Tekrony, D.; Egli, D. The Bulk Conductivity Test as an Indicator of Soybean Seed Quality. J. Seed Technol. 1988, 12, 37–53.
  • Sano, N.; Rajjou, L.; North, H. M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 2016, 57, 660–674. DOI: 10.1093/pcp/pcv186.
  • Moreira-Vilar, F. C.; de Cássia Siqueira-Soares, R.; Finger-Teixeira, A.; de Oliveira, D. M.; Ferro, A. P.; da Rocha, G. J.; Maria de Lourdes, L. F.; dos Santos, W. D.; Ferrarese-Filho, O. The Acetyl Bromide Method is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS One 2014, 9, e110000. DOI: 10.1371/journal.pone.0110000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.