204
Views
4
CrossRef citations to date
0
Altmetric
Articles

Diffuse interface model of the freeze-drying process of individually frozen products

, , &
Pages 758-774 | Received 17 Jul 2019, Accepted 28 Dec 2019, Published online: 20 Jan 2020

References

  • Meryman, H. T. Sublimation Freeze-Drying without Vacuum. Science 1959, 130, 628–629. DOI: 10.1126/science.130.3376.628.
  • Claussen, I. C.; Ustad, T. S.; Str⊘Mmen, I.; Walde, P. M. Atmospheric Freeze Drying: A Review. Drying Technol. 2007, 25, 947–957. DOI: 10.1080/07373930701394845.
  • Berk, Z. Freeze Drying (Lyophilization) and Freeze Concentration. In Food Process Engineering and Technology; 1st ed.; Berk, Z., Ed. Elsevier: Amsterdam, 2013; pp 567–581.
  • Krokida, M. K.; Karathanos, V. T.; Maroulis, Z. B. Effect of Freeze-Drying Conditions on Shrinkage and Porosity of Dehydrated Agricultural Products. J. Food Eng. 1998, 35, 369–380. DOI: 10.1016/S0260-8774(98)00031-4.
  • Oetjen, G. W.; Haseley, P. Freeze-Drying, 2nd ed.; Wiley: Weinheim, 2004.
  • Ishwarya, S. P.; Anandharamakrishnan, C. Spray-Freeze-Drying Approach for Soluble Coffee Processing and Its Effect on Quality Characteristics. J. Food Eng. 2015, 149, 171–180. DOI: 10.1016/j.jfoodeng.2014.10.011.
  • Wang, Y.; Zhang, M.; Adhikari, B.; Mujumdar, A. S.; Zhou, B. The Application of Ultrasound Pretreatment and Pulse-Spouted Bed Microwave Freeze Drying to Produce Desalted Duck Egg White Powders. Drying Technol. 2013, 31, 1826–1836. DOI: 10.1080/07373937.2013.829851.
  • Fissore, D.; Velardi, S. Freeze Drying: Basic Concepts and General Calculation Procedures. In Operations in Food Refrigeration, Mascheroni R. H., Ed. Taylor & Francis Group: Boca Raton, 2012; pp 47–68.
  • Crank, J. The Mathemtics of Diffusion, 2nd ed. Oxford University Press: Bristol, 1975.
  • Claussen, I. C.; Andresen, T.; Eikevik, T. M.; Str⊘Mmen, I. Atmospheric Freeze Drying—Modeling and Simulation of a Tunnel Dryer. Drying Technol. 2007, 25, 1959–1965. DOI: 10.1080/07373930701727275.
  • Wolff, E.; Gibert, H. Atmospheric Freeze-Drying Part 2: Modelling Drying Kinetics Using Adsorption Isotherms. Drying Technol. 1990, 8, 405–428. DOI: 10.1080/07373939008959891.
  • Aseev, D. L.; Alexandrov, D. V. Directional Solidification of Binary Melts with a Non-Equilibrium Mushy Layer. Int. J. Heat Mass Transfer 2006, 49, 4903–4909. DOI: 10.1016/j.ijheatmasstransfer.2006.05.046.
  • Worster, M. G. Convection in Mushy Layers. Annu. Rev. Fluid Mech. 1997, 29, 91–122. DOI: 10.1146/annurev.fluid.29.1.91.
  • Warning, A. D.; Arquiza, J. M. R.; Datta, A. K. A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying. Food Bioprod. Process 2015, 94, 637–648. DOI: 10.1016/j.fbp.2014.08.011.
  • Qin, R. S.; Bhadeshia, H. K. Phase Field Method. J. Mater. Sci. Technol. 2010, 26, 803–811. DOI: 10.1179/174328409X453190.
  • Karma, A.; Rappel, W. Phase-Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics. Bull. Am. Phys. Soc. 1996, 53, 3017–3020. DOI: 1063-651X/96/53(4)/3017(4).
  • Ozuna, C.; Gómez Álvarez-Arenas, T.; Riera, E.; Cárcel, J. A.; Garcia-Perez, J. V. Textural Properties of Vegetables: A Key Parameter on Ultrasonic Assisted Convective Drying. Ultrason. Sonochem. 2014, 21, 1235–1243.
  • Velardi, S. A.; Barresi, A. A. Development of Simplified Models for the Freeze-Drying Process and Investigation of the Optimal Operating Conditions. Chem. Eng. Res. Des. 2008, 86, 9–22. DOI: 10.1016/j.cherd.2007.10.007.
  • Liapis, A. I.; Bruttini, R. Freeze Drying of Pharmaceutical Crystalline and Amorphous Solutes in Vials: Dynamic Multidimensional Models of the Primary and Secondary Drying Stages and Qualitative Features of the Moving Interface. Drying Technol. 1995, 13, 43–72. DOI: 10.1080/07373939508916942.
  • Halder, A.; Dhall, A.; Datta, A. K. An Improved, Easily Implementable, Porous Media Based Model for Deep-Fat Frying Part I: Model Development and Input Parameters. Food Bioprod. Process. 2007, 85, 209–219. DOI: 10.1205/fbp07033.
  • Fang, G.; Ward, C. A. Temperature Measured Close to the Interface of an Evaporating Liquid. Phys. Rev. E 1999, 59, 417–428. DOI: 10.1103/PhysRevE.59.417.
  • Halder, A.; Dhall, A.; Datta, A. k. Modeling Transport in Porous Media with Phase Change: Applications to Food Processing. J. Heat Transfer 2010, 133, 1–13. DOI: 10.1115/1.4002463.
  • Hahn, D.; Özisik, M. Heat Conduction, 3rd ed.; John Wiley & Sons: New York, 2012.
  • Russo, P.; Adiletta, G.; Di Matteo, M. The Influence of Drying Air Temperature on the Physical Properties of Dried and Rehydrated Eggplant. Food Bioprod. Process. 2013, 91, 249–256. DOI: 10.1016/j.fbp.2012.10.005.
  • Fissore, D.; Pisano, R.; Barresi, A. A. Using Mathematical Modeling and Prior Knowledge for QbD in Freeze-Drying Processes. In Quality by Design for Biopharmaceutical Drug Product Development, Jameel, F., Eds.; Springer Science: New York, 2015; pp 565–593.
  • Zhang, S.; Liu, J. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment. Math. Probl. Eng. 2012, 2012, 1–10. DOI: 10.1155/2012/921254.
  • Fissore, D.; Pisano, R.; Barresi, A. A. On the Methods Based on the Pressure Rise Test for Monitoring a Freeze-Drying Process. Drying Technol. 2010, 29, 73–90. DOI: 10.1080/07373937.2010.482715.
  • Fukusano, S. Thermophysical Properties of Ice, Snow, and Sea Ice. Int. J. Thermophys. 1990, 11, 353–371. DOI: 10.1007/bf01133567.
  • Sereno, A. M.; Silva, M. A.; Mayor, L. Determination of Particle Density and Porosity in Foods and Porous Materials with High Moisture Content. Int. J. Food Prop. 2007, 10, 455–469. DOI: 10.1080/10942910600880736.
  • Ali, S. D.; Ramaswamy, H. S.; Awuah, G. B. Thermo-Physical Properties of Selected Vegetables as Influenced by Temperature and Moisture Content. J. Food Process Eng. 2002, 25, 417–433. DOI: 10.1111/j.1745-4530.2002.tb00575.x.
  • Nam, J. H.; Song, C. S. Numerical Simulation of Conjugate Heat and Mass Transfer during Multi-Dimensional Freeze Drying of Slab-Shaped Food Products. Int. J. Heat Mass Transfer 2007, 50, 4891–4900. DOI: 10.1016/j.ijheatmasstransfer.2007.08.004.
  • Tchigeov, G. Thermophysical Processes in Food Refrigeration Technology. Food Industry: Moskow, 1979, 272 pp.
  • US Department of Agriculture. Nutrient Database for Standard Reference, Release 11, USDA, Ed.; Washington, DC, 1996.
  • Pikal, M. J.; Roy, M. L.; Shah, S. Mass and Heat Transfer in Vial Freeze‐Drying of Pharmaceuticals: Role of the Vial. J. Pharm. Sci. 1984, 73, 1224–1237. DOI: 10.1002/jps.2600730910.
  • Rohsenow, W. M.; Hartnett, J. R. Hand Book of Heat Transfer, 3rd ed. McGraw-Hill: New York, 1998.
  • Howell, J. R.; Siegel, R.; Mengüç, M. P. Thermal Radiation Heat Transfer, 5th ed.; CRC Press, Taylor & Francis Group: Boca Raton, 2010.
  • Incropera, F. P.; DeWitt, D. P.; Bergman, T. L.; Lavine, A. S. Radiation: Process and Properties. In Fundamentals of Heat and Mass Transfer, Hayton J., Ed. John Wiley & Sons: Hoboken, NJ, 2006; pp 724–809.
  • Mittal, R.; Iaccarino, G. Immersed Boundary Methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. DOI: 10.1146/annurev.fluid.37.061903.175743.
  • Hanson, P. M.; Yang, R. Y.; Tsou, S. C. S.; Ledesma, D.; Engle, L.; Lee, T. C. Diversity in Eggplant (Solanum melongena) for Superoxide Scavenging Activity, Total Phenolics, and Ascorbic Acid. J. Food Compos. Anal. 2006, 19, 594–600. DOI: 10.1016/j.jfca.2006.03.001.
  • Lietta, E.; Colucci, D.; Distefano, G.; Fissore, D. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. J. Pharm. Sci. 2019, 108, 391–398. DOI: 10.1016/j.xphs.2018.07.025.
  • Patel, S. M.; Doen, T.; Pikal, M. J. Determination of End Point of Primary Drying in Freeze-Drying Process Control. AAPS PharmSciTech 2010, 11, 73–84. DOI: 10.1208/s12249-009-9362-7.
  • Pisano, R.; Fissore, D.; Barresi, A. A. Heat Transfer in Freeze-Drying Apparatus. In Developments in Heat Transfer, Dos Santos Bernardes, M. A., Ed.; InTech: Rijeka, Croatia, 2011.
  • Fissore, D.; Pisano, R. Computer-Aided Framework for the Design of Freeze-Drying Cycles: Optimization of the Operating Conditions of the Primary Drying Stage. Processes 2015, 3, 406–421. DOI: 10.3390/pr3020406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.