Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 6
283
Views
5
CrossRef citations to date
0
Altmetric
Articles

Characterization of moisture states and transport in MUF resin-impregnated poplar wood using low field nuclear magnetic resonance

ORCID Icon, , , , , & show all
Pages 791-802 | Received 29 Nov 2019, Accepted 19 Jan 2020, Published online: 03 Feb 2020

References

  • Beck, G.; Thybring, E. E.; Thygesen, L. G.; Hill, C. Characterization of Moisture in Acetylated and Propionylated Radiata Pine Using Low-Field Nuclear Magnetic Resonance (LFNMR) Relaxometry. Holzforschung 2018, 72, 225–233. DOI: 10.1515/hf-2017-0072.
  • Korkut, S.; Budakci, M. Effect of High-Temperature Treatment on the Mechanical Properties of Rowan (Sorbus Aucuparia L.) Wood. Drying Technol. 2009, 27, 1240–1247. DOI: 10.1080/07373930903267161.
  • Kyziol, L. Reinforcing Wood by Surface Modification. Compos. Struct. 2016, 158, 64–71. DOI: 10.1016/j.compstruct.2016.06.055.
  • Şadiye Yasar, Ş.; Said Fidan, M.; Yaşar, M.; Atar, M.; Alkan, E. Combustion Properties of Impregnated Spruce (Picea orientalis L.) Wood. Constr. Build. Mater. 2017, 143, 574–579. DOI: 10.1016/j.conbuildmat.2017.03.141.
  • Deka, M.; Saikia, C. Chemical Modification of Wood with Thermosetting Resin Effect on Dimensional Stability and Strength Property. Bioresour. Technol 2000, 73, 179–181. DOI: 10.1016/S0960-8524(99)00167-4.
  • Hosseinpourpia, R.; Adamopoulos, S.; Mai, C. Dynamic Vapour Sorption of Wood and Holocellulose Modified with Thermosetting Resins. Wood Sci. Technol. 2016, 50, 165–178. DOI: 10.1007/s00226-015-0765-1.
  • Militz, H.; Lande, S. Challenges in Wood Modification Technology on the Way to Practical Applications. Wood Mater. Sci. Eng. 2009, 4, 23–29. DOI: 10.1080/17480270903275578.
  • Jiang, Y.; Jin, X.; Xu, F.; Chen, X. D. Quantifying Food Drying Rates from NMR/MRI Experiments: Development of an Online Calibration System. Drying Technol. 2019, 37, 2047–2058. DOI: 10.1080/07373937.2018.1552291.
  • Wu, X. F.; Zhang, M.; Li, Z. Q. Dehydration Modeling of Cordyceps militaris in Mid-Infrared-Assisted Convection Drying System: Using Low-Field Nuclear Magnetic Resonance with the Aid of ELM and PLSR. Drying Technol. 2019, 37, 2072–2086. DOI: 10.1080/07373937.2018.1555843.
  • Menon, R. S.; MacKay, A. L.; Hailey, J. R. T.; Bloom, M.; Burgess, A. E.; Swanson, J. S. An NMR Determination of the Physiological Water Distribution in Wood during Drying. J. Appl. Polym. Sci. 1987, 33, 1141–1155. DOI: 10.1002/app.1987.070330408.
  • Araujo, C. D.; Avramidis, S.; MacKay, A. L. Behaviour of Solid Wood and Bound Water as a Function of Moisture Content. A Proton Magnetic Resonance Study. Holzforschung 1994, 48, 69–74. DOI: 10.1515/hfsg.1994.48.1.69.
  • Labbé, N.; De Jéso, B.; Lartigue, J.-C.; Daudé, G.; Pétraud, M.; Ratier, M. Time-Domain 1H NMR Characterization of the Liquid Phase in Greenwood. Holzforschung 2006, 60, 265–270. DOI: 10.1515/HF.2006.043.
  • Almeida, G.; Gagné, S.; Hernández, R. E. A NMR Study of Water Distribution in Hardwoods at Several Equilibrium Moisture Contents. Wood Sci. Technol. 2007, 41, 293–307. DOI: 10.1007/s00226-006-0116-3.
  • Passarini, L.; Malveau, C.; Hernández, R. E. Distribution of the Equilibrium Moisture Content in Four Hardwoods below Fiber Saturation Point with Magnetic Resonance Microimaging. Wood Sci. Technol. 2015, 49, 1251–1218. DOI: 10.1007/s00226-015-0751-7.
  • Fredriksson, M.; Thygesen, L. G. The States of Water in Norway Spruce (Picea abies (L.) Karst.) Studied by Low-Field Nuclear Magnetic Resonance (LFNMR) Relaxometry: Assignment of Free-Water Populations Based on Quantitative Wood Anatomy. Holzforschung 2017, 71, 77–90. DOI: 10.1515/hf-2016-0044.
  • Zhou, F.; Fu, Z.; Zhou, Y.; Zhao, J.; Gao, X.; Jiang, J. Moisture Transfer and Stress Development during High-Temperature Drying of Chinese Fir. Drying Technol. 2020, 38, 545–554. DOI: 10.1080/07373937.2019.1588900.
  • Thygesen, L. G.; Elder, T. Moisture in Untreated, Acetylated, and Furfurylated Norway Spruce Studied during Drying Using Time Domain NMR. Wood Fiber Sci. 2008, 40, 309–320.
  • Thygesen, L. G.; Elder, T. Moisture in Untreated, Acetylated, and Furfurylated Norway Spruce Monitored during Drying below Fiber Saturation Using Time Domain NMR. Wood Fiber Sci. 2009, 41, 194–200.
  • Thygesen, L. G.; Engelund, E. T.; Hoffmeyer, P. Water Sorption in Wood and Modified Wood at High Values of Relative Humidity. Part I: Results for Untreated, Acetylated, and Furfurylated Norway Spruce. Holzforschung 2010, 64, 315–323. DOI: 10.1515/hf.2010.044.
  • Kekkonen, P. i M.; Ylisassi, A.; Telkki, V.-V. Absorption of Water in Thermally Modified Pine Wood as Studied by Nuclear Magnetic Resonance. J. Phys. Chem. C 2014, 118, 2146–2153. DOI: 10.1021/jp411199r.
  • Javed, M. A.; Kekkonen, P. M.; Ahola, S.; Telkki, V.-V. Magnetic Resonance Imaging Study of Water Absorption in Thermally Modified Pine Wood. Holzforschung 2015, 69, 899–907. DOI: 10.1515/hf-2014-0183.
  • Gao, Y.; Xu, K.; Peng, H.; Jiang, J.; Zhao, R.; Lu, J. Effect of Heat Treatment on Water Absorption of Chinese Fir Using TD-NMR. Appl. Sci. 2018, 9, 78. DOI: 10.3390/app9010078.
  • Rosenkilde, A.; Glover, P. High Resolution Measurement of the Surface Layer Moisture Content During Drying of Wood Using a Novel Magnetic Resonance Imaging Technique. Holzforschung 2002, 56, 312–317. DOI: 10.1515/HF.2002.050.
  • Rosenkilde, A.; Gorce, J.-P.; Barry, A. Measurement of Moisture Content Profiles During Drying of Scots Pine Using Magnetic Resonance Imaging. Holzforschung 2004, 58, 138–142. DOI: 10.1515/HF.2004.020.
  • Xu, K.; Lu, J.; Gao, Y.; Wu, Y.; Li, X. Determination of Moisture Content and Moisture Content Profiles in Wood during Drying by Low-Field Nuclear Magnetic Resonance. Drying Technol. 2017, 35, 1909–1918. DOI: 10.1080/07373937.2017.1291519.
  • Sandoval-Torres, S.; Pérez-Santiago, A.; Hernández-Bautista, E. Drying Model for Softwood and Moisture Patterns Measured by Magnetic Resonance Imaging. Drying Technol. 2019, 37, 458–467. DOI: 10.1080/07373937.2018.1457050.
  • Telkki, V.-V.; Jokisaari, J. Determination of the Structure of Wood from the Self-Diffusion Probability Densities of a Fluid Observed by Position-Exchange NMR Spectroscopy. Phys. Chem. Chem. Phys. 2009, 11, 1167–1172. DOI: 10.1039/b817727a.
  • Telkki, V.-V.; Yliniemi, M.; Jokisaari, J. Moisture in Softwoods: fiber Saturation Point, Hydroxyl Site Content, and the Amount of Micropores as Determined from NMR Relaxation Time Distributions. Holzforschung 2013, 67, 291–300. DOI: 10.1515/hf-2012-0057.
  • Labbé, N.; De Jéso, B.; Lartigue, J.-C.; Daudé, G.; Pétraud, M.; Ratier, M. Moisture Content and Extractive Materials in Maritime Pine Wood by Low Field 1H NMR. Holzforschung 2002, 56, 25–31. DOI: 10.1515/HF.2002.005.
  • Riggin, M. T.; Sharp, A. R.; Kaiser, R.; Schneider, M. H. Transverse NMR Relaxation of Water in Wood. J. Appl. Polym. Sci. 1979, 23, 3147–3154. DOI: 10.1002/app.1979.070231101.
  • Gezici-Koç, Ö.; Erich, S. J. F.; Huinink, H. P.; Ven, L. G. J. V. D.; Adan, O. C. G. Bound and Free Water Distribution in Wood during Water Uptake and Drying as Measured by 1D Magnetic Resonance Imaging. Cellulose 2017, 24, 535–553. DOI: 10.1007/s10570-016-1173-x.
  • Brownstein, K. R.; Tarr, C. E. Importance of Classical Diffusion in NMR Studies of Water in Biological Cells. Phys. Rev. A 1979, 19, 2446–2453. DOI: 10.1103/PhysRevA.19.2446.
  • Araujo, C. D.; MacKay, A. L.; Whittall, K. P.; Hailey, J. R. T. A Diffusion Model for Spin-Spin Relaxation of Compartmentalized Water in Wood. J. Magnet. Resonan. B 1993, 101, 248–261. DOI: 10.1006/jmrb.1993.1041.
  • Elder, T.; Houtman, C. Time-Domain NMR Study of the Drying of Hemicellulose Extracted Aspen (Populus tremuloides Michx.). Holzforschung 2013, 67, 405–411. DOI: 10.1515/hf-2012-0130.
  • Brownstein, K. R. Diffusion as an Explanation of Observed NMR Behavior of Water Absorbed on Wood. J. Magnet. Resonan. 1980, 40, 505–510. DOI: 10.1016/0022-2364(80)90009-8.
  • Bloembergen, N.; Purcell, E. M.; Pound, R. V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. DOI: 10.1103/PhysRev.73.679.
  • Brownstein, K. R.; Tarr, C. E. Spin-Lattice Relaxation in a System Governed by Diffusion. J. Magnet. Resonan. 1977, 26, 17–24. DOI: 10.1016/0022-2364(77)90230-X.
  • He, G.; Riedl, B. Curing Kinetics of Phenol Formaldehyde Resin and Wood-Resin Interactions in the Presence of Wood Substrates. Wood Sci. Technol. 2004, 38, 69–81. DOI: 10.1007/s00226-003-0221-5.
  • He, G.; Yan, N. Effect of Wood on the Curing Behavior of Commercial Phenolic Resin Systems. J. Appl. Polym. Sci. 2005, 95, 185–192. DOI: 10.1002/app.21115.
  • Dvinskikh, S. V.; Henriksson, M.; Mendicino, A. L.; Fortino, S.; Toratti, T. NMR Imaging Study and multi-Fickian Numerical Simulation of Moisture Transfer in Norway Spruce Samples. Eng. Struct. 2011, 33, 3079–3086. DOI: 10.1016/j.engstruct.2011.04.011.
  • Eitelberger, J.; Hofstetter, K.; Dvinskikh, S. V. A Multi-Scale Approach for Simulation of Transient Moisture Transport Processes in Wood below the Fiber Saturation Point. Compos. Sci. Technol. 2011, 71, 1727–1738. DOI: 10.1016/j.compscitech.2011.08.004.
  • Frandsen, H. L.; Damkilde, L.; Svensson, S. A Revised multi-Fickian Moisture Transport Model to Describe non-Fickian Effects in Wood. Holzforschung 2007, 61, 563–572. DOI: 10.1515/HF.2007.085.
  • Engelund, E. T.; Thygesen, L. G.; Svensson, S.; Hill, C. A. A Critical Discussion of the Physics of Wood-Water Interactions. Wood Sci. Technol. 2013, 47, 141–161. DOI: 10.1007/s00226-012-0514-7.
  • Krabbenhoft, K.; Damkilde, L. A Model for non-Fickian Moisture Transfer in Wood. Mater. Struct. 2004, 37, 615–622. DOI: 10.1007/BF02483291.
  • Wang, X. M.; Riedl, B.; Christiansen, A. W.; Geimer, R. L. The Effects of Temperature and Humidity on Phenol-Formaldehyde Resin Bonding. Wood Sci. Technol. 1995, 29, 253–266. DOI: 10.1007/BF00202085.
  • Singh, A. P.; Causin, V.; Nuryawan, A.; Park, B. D. Morphological, Chemical and Crystalline Features of Urea-Formaldehyde Resin Cured in Contact with Wood. Eur. Polym. J. 2014, 56, 185–193. DOI: 10.1016/j.eurpolymj.2014.04.014.
  • Yelle, D. J.; Ralph, J. Characterizing Phenol-Formaldehyde Adhesive Cure Chemistry within the Wood Cell Wall. Int. J. Adhes. Adhes. 2016, 70, 26–36. DOI: 10.1016/j.ijadhadh.2016.05.002.
  • Wang, X. M.; Riedl, B.; Christiansen, A. W.; Geimer, R. L. Differential Scanning Calorimetry of the Effects of Temperature and Humidity on Phenol-Formaldehyde Resin Cure. Polymer 1994, 35, 5685–5692. DOI: 10.1016/S0032-3861(05)80042-4.
  • Hill, C. A. S. Wood Modification: Chemical, Thermal and Other Processes; Chichester: John Wiley & Sons, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.