Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 7
612
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic understanding of microwave-vacuum drying of non-deformable porous media

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 850-867 | Received 30 Jun 2019, Accepted 06 Feb 2020, Published online: 19 Feb 2020

References

  • Monteiro, R. L.; Carciofi, B. A. M.; Marsaioli, A.; Laurindo, J. B. How to Make a Microwave Vacuum Dryer with Turntable. J. Food Eng. 2015, 166, 276–284. DOI: 10.1016/j.jfoodeng.2015.06.029.
  • Monteiro, R. L.; Carciofi, B. A. M.; Laurindo, J. B. A Microwave Multi-Flash Drying Process for Producing Crispy Bananas. J. Food Eng. 2016, 178, 1–11. DOI: 10.1016/j.jfoodeng.2015.12.024.
  • Monteiro, R. L.; Link, J. V.; Tribuzi, G.; Carciofi, B. A. M.; Laurindo, J. B. Microwave Vacuum Drying and Multi-Flash Drying of Pumpkin Slices. J. Food Eng. 2018, 232, 1–10. DOI: 10.1016/j.jfoodeng.2018.03.015.
  • Alibas, I. Microwave, Vacuum, and Air Drying Characteristics of Collard Leaves. Dry. Technol. 2009, 27, 1266–1273. DOI: 10.1080/07373930903267773.
  • Zhou, J.; Yang, X.; Zhu, H.; Yan, J.; Huang, K. Microwave Drying Process of Corns Based on Double Porous Model. Dry. Technol. 2019, 37, 92–104. DOI: 10.1080/07373937.2018.1439952.
  • Pawlak, T.; Gawałek, J.; Ryniecki, A.; Stangierski, J.; Siatkowski, I.; Peplińska, B.; Pospiech, E. Microwave Vacuum Drying and Puffing on the Meat Tissue—Process Analysis. Dry. Technol. 2019, 37, 156–163. DOI: 10.1080/07373937.2018.1444635.
  • Ahrens, F. W.; Habeger, C. C. Use of New Applicator Design Ideas to Improve Uniformity of Paper Drying via Microwave Energy. Dry. Technol. 2001, 19, 2531–2548. DOI: 10.1081/DRT-100108252.
  • Li, X.; Zhang, B.; Li, W. Microwave-Vacuum Drying of Wood: Model Formulation and Verification. Dry. Technol. 2008, 26, 1382–1387. DOI: 10.1080/07373930802333551.
  • Walters, R. H.; Bhatnagar, B.; Tchessalov, S.; Izutsu, K.; Tsumoto, K.; Ohtake, S. Next Generation Drying Technologies for Pharmaceutical Applications. J. Pharm. Sci. 2014, 103, 2673–2695. DOI: 10.1002/jps.23998.
  • Datta, A. K.; Anatheswaran, R. C. Handbook of Microwave Technology for Food Applications; Marcel Dekker Inc.: New York, 2001.
  • Zotarelli, M. F.; Porciuncula, B. D. A.; Laurindo, J. B. A Convective Multi-Flash Drying Process for Producing Dehydrated Crispy Fruits. J. Food Eng. 2012, 108, 523–531. DOI: 10.1016/j.jfoodeng.2011.09.014.
  • Porciuncula, B. D. A.; Segura, L. A.; Laurindo, J. B. Processes for Controlling the Structure and Texture of Dehydrated Banana. Dry. Technol. 2016, 34, 167–176. DOI: 10.1080/07373937.2015.1014911.
  • Datta, A. K.; Rakesh, V. Principles of Microwave Combination Heating. Compr. Rev. Food Sci. Food Saf. 2013, 12, 24–39. DOI: 10.1111/j.1541-4337.2012.00211.x.
  • Carciofi, B. A. M.; Prat, M.; Laurindo, J. B. Homogeneous Volume-of-Fluid (VOF) Model for Simulating the Imbibition in Porous Media Saturated by Gas. Energy Fuels 2011, 25, 2267–2273. DOI: 10.1021/ef200233j.
  • Carciofi, B. A. M.; Prat, M.; Laurindo, J. B. Dynamics of Vacuum Impregnation of Apples: Experimental Data and Simulation Results Using a VOF Model. J. Food Eng. 2012, 113, 337–343. DOI: 10.1016/j.jfoodeng.2012.05.023.
  • Zhu, H.; Gulati, T.; Datta, A. K.; Huang, K. Microwave Drying of Spheres: Coupled Electromagnetics-Multiphase Transport Modeling with Experimentation. Part I: Model Development and Experimental Methodology. Food Bioprod. Process. 2015, 96, 314–325. DOI: 10.1016/j.fbp.2015.08.003.
  • Gulati, T.; Zhu, H.; Datta, A. K. Coupled Electromagnetics, Multiphase Transport and Large Deformation Model for Microwave Drying. Chem. Eng. Sci. 2016, 156, 206–228. DOI: 10.1016/j.ces.2016.09.004.
  • Ni, H.; Datta, A. K.; Torrance, K. E. Moisture Transport in Intensive Microwave Heating of Biomaterials: A Multiphase Porous Media Model. Int. J. Heat Mass Transf. 1999, 42, 1501–1512. DOI: 10.1016/S0017-9310(98)00123-9.
  • Sanga, E. C. M.; Mujumdar, A. S.; Raghavan, G. S. V. Simulation of Convection-Microwave Drying for a Shrinking Material. Chem. Eng. Process. 2002, 41, 487–499. DOI: 10.1016/S0255-2701(01)00170-2.
  • Salagnac, P.; Glouannec, P.; Lecharpentier, D. Numerical Modeling of Heat and Mass Transfer in Porous Medium during Combined Hot Air, Infrared and Microwaves Drying. Int. J. Heat Mass Transf. 2004, 47, 4479–4489. DOI: 10.1016/j.ijheatmasstransfer.2004.04.015.
  • Malafronte, L.; Lamberti, G.; Barba, A. A.; Raaholt, B.; Holtz, E.; Ahrné, L. Combined Convective and Microwave Assisted Drying: Experiments and Modeling. J. Food Eng. 2012, 112, 304–312. DOI: 10.1016/j.jfoodeng.2012.05.005.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Karim, M. A. Multiphase Porous Media Model for Intermittent Microwave Convective Drying (IMCD) of Food. Int. J. Therm. Sci. 2016, 104, 304–314. DOI: 10.1016/j.ijthermalsci.2016.01.018.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Millar, G. J.; Karim, M. A. Mathematical Model for Intermittent Microwave Convective Drying of Food Materials. Dry. Technol. 2016, 34, 962–973. DOI: 10.1080/07373937.2015.1087408.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Karim, M. A. Investigation of Intermittent Microwave Convective Drying (IMCD) of Food Materials by a Coupled 3D Electromagnetics and Multiphase Model. Dry. Technol. 2018, 36, 736–750. DOI: 10.1080/07373937.2017.1354874.
  • Marra, F.; De Bonis, M. V.; Ruocco, G. Combined Microwaves and Convection Heating: A Conjugate Approach. J. Food Eng. 2010, 97, 31–39. DOI: 10.1016/j.jfoodeng.2009.09.012.
  • Arballo, J. R.; Campañone, L. A.; Mascheroni, R. H. Modeling of Microwave Drying of Fruits. Dry. Technol. 2010, 28, 1178–1184. DOI: 10.1080/07373937.2010.493253.
  • Jiang, J.; Dang, L.; Yuensin, C.; Tan, H.; Pan, B.; Wei, H. Simulation of Microwave Thin Layer Drying Process by a New Theoretical Model. Chem. Eng. Sci. 2017, 162, 69–76. DOI: 10.1016/j.ces.2016.12.040.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Transfer Model for Intermittent Microwave-Convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiph. Flow 2017, 95, 101–119. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Nadi, F.; Rahimi, G. H.; Younsi, R.; Tavakoli, T.; Hamidi-Esfahani, Z. Numerical Simulation of Vacuum Drying by Luikov’s Equations. Dry. Technol. 2012, 30, 197–206. DOI: 10.1080/07373937.2011.595860.
  • Torres, S. S.; Jomaa, W.; Puiggali, J. R.; Avramidis, S. Multiphysics Modeling of Vacuum Drying of Wood. Appl. Math. Model. 2011, 35, 5006–5016. DOI: 10.1016/j.apm.2011.04.011.
  • Erriguible, A.; Bernada, P.; Couture, F.; Roques, M. A. Simulation of Vacuum Drying by Coupling Models. Chem. Eng. Process. 2007, 46, 1274–1285. DOI: 10.1016/j.cep.2006.10.011.
  • Ayappa, K. G.; Crapiste, G.; Davis, H. T.; Davis, E. A.; Gordon, J. Microwave Heating: An Evaluation of Power Formulations. Chem. Eng. Sci. 1991, 46, 1005–1016. DOI: 10.1016/0009-2509(91)85093-D.
  • Oliveira, M. E. C.; Franca, A. S. Microwave Heating of Foodstuffs. J. Food Eng. 2002, 53, 347–359. DOI: 10.1016/S0260-8774(01)00176-5.
  • Kostoglou, M.; Karapantsios, T. D. Approximate Computation of Heat Sources in Axisymmetric Microwave Heating. AIChE J. 2006, 52, 408–413. DOI: 10.1002/aic.10636.
  • He, S.; Qian, J.; Qu, L.; Wang, Z.; Yi, S. Simulation of Moisture Transfer during Wood Vacuum Drying. Results Phys. 2019, 12, 1299–1303. DOI: 10.1016/j.rinp.2019.01.017.
  • Warning, A.; Dhall, A.; Mitrea, D.; Datta, A. K. Porous Media Based Model for Deep-Fat Vacuum Frying Potato Chips. J. Food Eng. 2012, 110, 428–440. DOI: 10.1016/j.jfoodeng.2011.12.024.
  • Warning, A.; Arquiza, J. M. R.; Datta, A. K. A Multiphase Porous Medium Transport Model with Distributed Sublimation Front to Simulate Vacuum Freeze Drying. Food Bioprod. Process. 2015, 94, 637–648. DOI: 10.1016/j.fbp.2014.08.011.
  • Ratanadecho, P.; Aoki, K.; Akahori, M. A Numerical and Experimental Study of Microwave Drying Using a Rectangular Wave Guide. Dry. Technol. 2001, 19, 2209–2234. DOI: 10.1081/DRT-100107495.
  • Peré, C.; Rodier, E. Microwave Vacuum Drying of Porous Media: experimental Study and Qualitative Considerations of Internal Transfers. Chem. Eng. Process. 2002, 41, 427–436. DOI: 10.1016/S0255-2701(01)00161-1.
  • Prommas, R. Theoretical and Experimental Study of Heat and Mass Transfer Mechanism during Convective Drying of Multi-Layered Porous Packed Bed. Int. Commun. Heat Mass Transf. 2011, 38, 900–905. DOI: 10.1016/j.icheatmasstransfer.2011.03.031.
  • Chaiyo, K.; Rattanadecho, P. Numerical Analysis of Heat-Mass Transport and Pressure Buildup of Unsaturated Porous Medium in a Rectangular Waveguide Subjected to a Combined Microwave and Vacuum System. Int. J. Heat Mass Transf. 2013, 65, 826–844. DOI: 10.1016/j.ijheatmasstransfer.2013.06.066.
  • Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company Inc.: New York, 1972.
  • Laurindo, J. B.; Stringari, G. B.; Paes, S. S.; Carciofi, B. A. M. Experimental Determination of the Dynamics of Vacuum Impregnation of Apples. J. Food Sci. 2007, 72, 470–475. DOI: 10.1111/j.1750-3841.2007.00512.x.
  • Carciofi, B. A. M.; Teleken, J. T.; Bertelli, V. Z.; Prat, M.; Laurindo, J. B. Experimental Approach to Evaluate the Influence of Characteristic Length on the Dynamics of Biphasic Flow in Vacuum Impregnation. Chem. Eng. Sci. 2015, 138, 875–883. DOI: 10.1016/j.ces.2015.07.052.
  • Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. Adv. Heat Transf. 1977, 13, 119–203. DOI: 10.1016/S0065-2717(08)70223-5.
  • Kaviany, M. Principles of Heat Transfer in Porous Media, 2nd ed.; Springer Inc.: New York, 1995.
  • Datta, A. K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. I: Problem Formulations. J. Food Eng. 2007, 80, 80–95. DOI: 10.1016/j.jfoodeng.2006.05.013.
  • Halder, A.; Dhall, A.; Datta, A. K. An Improved, Easily Implementable Porous Media Based Model for Deep Fat Frying. Part I: Model Development and Input Parameters. Food Bioprod. Process. 2007, 85, 209–219. DOI: 10.1205/fbp07033.
  • Stoklosa, A. M.; Lipasek, R. A.; Taylor, L. S.; Mauer, L. J. Effects of Storage Conditions, Formulation, and Particle Size on Moisture Sorption and Flowability of Powders: A Study of Deliquescent Ingredient Blends. Food Res. Int. 2012, 49, 783–791. DOI: 10.1016/j.foodres.2012.09.034.
  • Lin, Y.; Anantheswaran, R. C.; Puri, V. M. Finite Element Analysis of Microwave Heating of Solid Foods. J. Food Eng. 1995, 25, 85–112. DOI: 10.1016/0260-8774(94)00008-W.
  • Romano, V. R.; Marra, F.; Tammaro, U. Modelling of Microwave Heating of Foodstuff: Study on the Influence of Sample Dimensions with a FEM Approach. J. Food Eng. 2005, 71, 233–241. DOI: 10.1016/j.jfoodeng.2004.11.036.
  • Fan, D.; Li, C.; Ma, W.; Zhao, J.; Zhang, H.; Chen, W. A Study of the Power Absorption and Temperature Distribution during Microwave Reheating of Instant Rice. Int. J. Food Sci. Technol. 2012, 47, 640–647. DOI: 10.1111/j.1365-2621.2011.02888.x.
  • Sadiku, M. N. O. Elementos de Eletromagnetismo, 5th ed.; Bookman: Porta Alegre, 2012.
  • Arballo, J. R.; Campañone, L. A.; Mascheroni, R. H. Numerical Simulation of Heat, Mass and Momentum Transfer during the Microwave Drying of Osmodehydrated Porous Material. In Proceedings of the 2014 COMSOL Conference in Curitiba, Curitiba, Brazil, 2014.
  • Tanikawa, W.; Shimamoto, T. Comparison of Klinkenberg-Corrected Gas Permeability and Water Permeability in Sedimentary Rocks. Int. J. Rock Mech. Min. Sci. 2009, 46, 229–238. DOI: 10.1016/j.ijrmms.2008.03.004.
  • Jones, F. O.; Owens, W. W. A Laboratory Study of Low-Permeability Gas Sands. J. Pet. Technol. 1980, 32, 1631–1640. DOI: 10.2118/7551-PA.
  • Verma, A. K.; Pruess, K.; Tsang, C. F.; Withespoon, P. A. A Study of Two-Phase Concurrent Flow of Steam and Water in an Unconsolidated Porous Medium. In 23rd ASME/AIChE National Heat Transfer Conference, Denver, USA, 1985.
  • She, H. Y.; Sleep, B. E. The Effect of Temperature on Capillary Pressure-Saturation Relationships of Air-Water and Perchloroethylene-Water Systems. Water Resour. Res. 1998, 34, 2587–2597. DOI: 10.1029/98WR01199.
  • Ma, H.; Ruth, D. W. The Microscopic Analysis of High Forchheimer Number Flow in Porous Media. Transp. Porous Med. 1993, 13, 139–160. DOI: 10.1007/BF00654407.
  • Comiti, J.; Saribi, N. E.; Montillet, A. Experimental Characterization of Flow Regimes in Various Porous Media—3: Limit of Darcy’s or Creeping Flow Regime for Newtonian and Purely Viscous Non-Newtonian Fluids. Chem. Eng. Sci. 2000, 55, 3037–3061. DOI: 10.1016/S0009-2509(99)00556-4.
  • Rakesh, V.; Datta, A. K.; Walton, J. H.; McCarthy, K. L.; McCarthy, M. J. Microwave Combination Heating: Coupled Electromagnetics—Multiphase Porous Media Modeling and MRI Experimentation. AIChE J. 2012, 58, 1262–1278. DOI: 10.1002/aic.12659.
  • Zhang, H.; Datta, A. K. Heating Concentrations of Microwaves in Spherical and Cylindrical Foods. Part One: In Planes Waves. Food Bioprod. Process. 2005, 83, 6–13. DOI: 10.1205/fbp.04046.
  • Zhang, H.; Datta, A. K. Heating Concentrations of Microwaves in Spherical and Cylindrical Foods. Part Two: In a Cavity. Food Bioprod. Process. 2005, 83, 14–24. DOI: 10.1205/fbp.04047.
  • Gulati, T.; Zhu, H.; Datta, A. K.; Huang, K. Microwave Drying of Spheres: Coupled Electromagnetics-Multiphase Transport Modeling with Experimentation. Part II: Model Validation and Simulation Results. Food Bioprod. Process. 2015, 96, 326–337. DOI: 10.1016/j.fbp.2015.08.001.
  • Kowalski, S.; Musielak, G.; Banaszak, J. Heat and Mass Transfer during Microwave-Convective Drying. AIChE J. 2010, 56, 24–35. DOI: 10.1002/aic.11948.
  • Ousegui, A.; Moresoli, C.; Dostie, M.; Marcos, B. Porous Multiphase Approach for Baking Process—Explicit Formulation of Evaporation Rate. J. Food Eng. 2010, 100, 535–544. DOI: 10.1016/j.jfoodeng.2010.05.003.
  • Chen, J.; Pitchai, K.; Birla, S.; Negahban, M.; Jones, D.; Subbiah, J. Heat and Mass Transport during Microwave Heating of Mashed Potato in Domestic Oven—Model Development, Validation and Sensitivity Analysis. J. Food Sci. 2014, 79, 1991–2004. DOI: 10.1111/1750-3841.12636.
  • Bansal, N. P.; Doremus, R. H. Handbook of Glass Properties; Academic Press Inc.: Orlando, 1986.
  • Bejan, A. Convective Heat Transfer, 3rd ed.; Wiley: New York, 2004.
  • Smith, J. M.; van Ness, H. C.; Abbott, M. M. Introduction to Chemical Engineering Thermodynamics, 7th ed.; McGraw Hill Higher Education Inc.: New York, NY, 2007.
  • McCabe, W.; Smith, J.; Harriot, P. Unit Operations of Chemical Engineering, 7th ed.; McGraw-Hill Inc.: Boston, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.