Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 7
181
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluation on microwave drying of waste paper towel with multi-magnetron and mode stirrer

, , &
Pages 882-895 | Received 16 Oct 2019, Accepted 06 Feb 2020, Published online: 24 Feb 2020

References

  • Hoornweg, D.; Bhada‐Tata, P.; Kennedy, C. Peak Waste: When is It Likely to Occur?. J. Ind. Ecol. 2015, 19, 117–128. DOI: 10.1111/jiec.12165.
  • Sipra, A. T.; Gao, N.; Sarwar, H. Municipal Solid Waste (MSW) Pyrolysis for Bio-Fuel Production: A Review of Effects of MSW Components and Catalysts. Fuel Process. Technol. 2018, 175, 131–147. DOI: 10.1016/j.fuproc.2018.02.012.
  • Mohammed, M.; Ozbay, I.; Durmusoglu, E. Bio-Drying of Green Waste with High Moisture Content. Process Saf. Environ. Protect. 2017, 111, 420–427. DOI: 10.1016/j.psep.2017.08.002.
  • Yuan, J.; Zhang, D.; Li, Y.; Chadwick, D.; Li, G.; Li, Y.; Du, L. Effects of Adding Bulking Agents on Biostabilization and Drying of Municipal Solid Waste. Waste Manage. (Oxford) 2017, 62, 52–60. DOI: 10.1016/j.wasman.2017.02.027.
  • Burnley, S.; Phillips, R.; Coleman, T.; Rampling, T. Energy Implications of the Thermal Recovery of Biodegradable Municipal Waste Materials in the United Kingdom. Waste Manage. (Oxford) 2011, 31, 1949–1959. DOI: 10.1016/j.wasman.2011.04.015.
  • Joseph, T.; Baah, K.; Jahanfar, A.; Dubey, B. A Comparative Life Cycle Assessment of Conventional Hand Dryer and Roll Paper Towel as Hand Drying Methods. Sci. Total Environ. 2015, 515-516, 109–117. DOI: 10.1016/j.scitotenv.2015.01.112.
  • Frigo, S.; Gabbrielli, R.; Linari, L. Feasibility Study of a CHP Plant with Steam Turbine and Biomass Gasification for Tissue Paper Production. Energy Procedia 2018, 148, 751–757. DOI: 10.1016/j.egypro.2018.08.136.
  • Zawadzka, A.; Krzystek, L.; Stolarek, P.; Ledakowicz, S. Biodrying of Organic Fraction of Municipal Solid Wastes. Drying Technol. 2010, 28, 1220–1226. DOI: 10.1080/07373937.2010.483034.
  • Zhang, X. Y.; Chen, M. Q.; Huang, Y. W.; Xue, F. Isothermal Hot Air Drying Behavior of Municipal Sewage Sludge Briquettes Coupled with Lignite Additive. Fuel 2016, 171, 108–115. DOI: 10.1016/j.fuel.2015.12.052.
  • Badaoui, O.; Hanini, S.; Djebli, A.; Haddad, B.; Benhamou, A. Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models. Renew. Energy 2019, 133, 144–155. DOI: 10.1016/j.renene.2018.10.020.
  • Carvalho, W. T. d.; Oliveira, T. F. d.; Silva, F. A. d.; Caliari, M.; Soares Júnior, M. S. Drying Kinetics of Potato Pulp Waste. Food Sci. Technol. (Campinas) 2014, 34, 116–122. DOI: 10.1590/S0101-20612014000100017.
  • Pu, Y.-Y.; Sun, D.-W. Combined Hot-Air and Microwave-Vacuum Drying for Improving Drying Uniformity of Mango Slices Based on Hyperspectral Imaging Visualisation of Moisture Content Distribution. Biosyst. Eng. 2017, 156, 108–119. DOI: 10.1016/j.biosystemseng.2017.01.006.
  • Wang, Y.; Li, X.; Chen, X.; Li, B.; Mao, X.; Miao, J.; Zhao, C.; Huang, L.; Gao, W. Effects of Hot Air and Microwave-Assisted Drying on Drying Kinetics, Physicochemical Properties, and Energy Consumption of Chrysanthemum. Chem. Eng. Process. Process Intensif. 2018, 129, 84–94. DOI: 10.1016/j.cep.2018.03.020.
  • Rattanadecho, P.; Makul, N. Microwave-Assisted Drying: A Review of the State-of-the-Art. Drying Technol. 2016, 34, 1–38. DOI: 10.1080/07373937.2014.957764.
  • Vongpradubchai, S.; Rattanadecho, P. Microwave and Hot Air Drying of Wood Using a Rectangular Waveguide. Drying Technol. 2011, 29, 451–460. DOI: 10.1080/07373937.2010.505312.
  • Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Convective Air, Microwave, and Combined Drying of Potato Pre-Treated by Pulsed Electric Fields. Drying Technol. 2019, 37, 1704–1713. DOI: 10.1080/07373937.2018.1536065.
  • Al-Harahsheh, M.; Al-Muhtaseb, A. a H.; Magee, T. R. A. Microwave Drying Kinetics of Tomato Pomace: Effect of Osmotic Dehydration. Chem. Eng. Process 2009, 48, 524–531. DOI: 10.1016/j.cep.2008.06.010.
  • Balbay, A.; Şahin, Ö. Microwave Drying Kinetics of a Thin-Layer Liquorice Root. Dry. Technol. 2012, 30, 859–864. DOI: 10.1080/07373937.2012.670682.
  • Du, G.; Wang, S.; Cai, Z. Microwave Drying of Wood Strands. Dry. Technol. 2005, 23, 2421–2436. DOI: 10.1080/07373930500340494.
  • Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of Hybrid (Microwave-Convectional) and Convectional Drying on Drying Kinetics, Total Phenolics, Antioxidant Capacity, Vitamin C, Color and Rehydration Capacity of Sour Cherries. Food Chem. 2017, 230, 295–305. DOI: 10.1016/j.foodchem.2017.03.046.
  • Fu, B. A.; Chen, M. Q.; Song, J. J. Investigation on the Microwave Drying Kinetics and Pumping Phenomenon of Lignite Spheres. Appl. Therm. Eng. 2017, 124, 371–380. DOI: 10.1016/j.applthermaleng.2017.06.034.
  • Wang, S.; Yang, R.; Han, Y.; Gu, Z. Effects of Magnetron Arrangement and Power Combination on Temperature Field Uniformity of Microwave Drying of Carrot. Dry. Technol. 2016, 34, 912–922. DOI: 10.1080/07373937.2015.1086782.
  • Andrés, A.; Bilbao, C.; Fito, P. Drying Kinetics of Apple Cylinders under Combined Hot Air–Microwave Dehydration. J. Food Eng. 2004, 63, 71–78. DOI: 10.1016/S0260-8774(03)00284-X.
  • Sebera, V.; Nasswettrová, A.; Nikl, K. Finite Element Analysis of Mode Stirrer Impact on Electric Field Uniformity in a Microwave Applicator. Dry. Technol. 2012, 30, 1388–1396. DOI: 10.1080/07373937.2012.664800.
  • Prommas, R.; Rattanadecho, P.; Jindarat, W. Energy and Exergy Analyses in Drying Process of Non-Hygroscopic Porous Packed Bed Using a Combined Multi-Feed Microwave-Convective Air and Continuous Belt System (CMCB). Int. Commun. Heat Mass Transfer 2012, 39, 242–250. DOI: 10.1016/j.icheatmasstransfer.2011.10.004.
  • Cuccurullo, G.; Giordano, L.; Metallo, A.; Cinquanta, L. Influence of Mode Stirrer and Air Renewal on Controlled Microwave Drying of Sliced Zucchini. Biosyst. Eng. 2017, 158, 95–101. DOI: 10.1016/j.biosystemseng.2017.03.012.
  • Cheng, H.; Hu, Y. Municipal Solid Waste (MSW) as a Renewable Source of Energy: Current and Future Practices in China. Bioresour. Technol. 2010, 101, 3816–3824. DOI: 10.1016/j.biortech.2010.01.040.
  • Fu, B. A.; Chen, M. Q.; Li, Q. H. Heat Transfer Characteristics and Drying Kinetics of Hematite Thin Layer during Hot Air Convection. Thermochim. Acta 2019, 682, 178405. DOI: 10.1016/j.tca.2019.178405.
  • Fu, B. A.; Chen, M. Q. Thin-Layer Drying Kinetics of Lignite during Hot Air Forced Convection. Chem. Eng. Res. Des. 2015, 102, 416–428. DOI: 10.1016/j.cherd.2015.07.019.
  • Feng, S.; Zhong, Z.; Wang, Y.; Xing, W.; Drioli, E. Progress and Perspectives in PTFE Membrane: Preparation, Modification, and Applications. J. Membr. Sci. 2018, 549, 332–349. DOI: 10.1016/j.memsci.2017.12.032.
  • Papantonis, S.; Ridler, N. M.; Lucyszyn, S. Rectangular Waveguide Enabling Technology Using Holey Surfaces and Wire Media Metamaterials. Sens. Actuators, A 2014, 209, 1–8. DOI: 10.1016/j.sna.2014.01.005.
  • Dadalı, G.; Kılıç Apar, D.; Özbek, B. Microwave Drying Kinetics of Okra. Dry. Technol. 2007, 25, 917–924. DOI: 10.1080/07373930701372254.
  • Doymaz, İ. Convective Drying Kinetics of Strawberry. Chem. Eng. Process 2008, 47, 914–919. DOI: 10.1016/j.cep.2007.02.003.
  • Roberts, J. S.; Kidd, D. R.; Padilla-Zakour, O. Drying Kinetics of Grape Seeds. J. Food Eng. 2008, 89, 460–465. DOI: 10.1016/j.jfoodeng.2008.05.030.
  • Cuevas, M.; Martínez-Cartas, M. L.; Pérez-Villarejo, L.; Hernández, L.; García-Martín, J. F.; Sánchez, S. Drying Kinetics and Effective Water Diffusivities in Olive Stone and Olive-Tree Pruning. Renew. Energy 2019, 132, 911–920. DOI: 10.1016/j.renene.2018.08.053.
  • Li, H.; Lin, B.; Yang, W.; Hong, Y.; Wang, Z. A Fully Coupled Electromagnetic-Thermal-Mechanical Model for Coalbed Methane Extraction with Microwave Heating. J. Nat. Gas Sci. Eng. 2017, 46, 830–844. DOI: 10.1016/j.jngse.2017.08.031.
  • Simula, S.; Ikäläinen, S.; Niskanen, K.; Varpula, T.; Seppä, H.; Paukku, A. Measurement of the Dielectric Properties of Paper. J. Imaging Sci. Technol. 1999, 43, 472–477.
  • Fu, B. A.; Chen, M. Q.; Huang, Y. W. Heat Transfer Characteristics on Lignite Thin-Layer during Hot Air Forced Convective Drying. Fuel 2015, 154, 132–139. DOI: 10.1016/j.fuel.2015.03.075.
  • Sun, G. Y.; Chen, M. Q.; Huang, Y. W. Evaluation on the Air-Borne Ultrasound-Assisted Hot Air Convection Thin-Layer Drying Performance of Municipal Sewage Sludge. Ultrason. Sonochem. 2017, 34, 588–599. DOI: 10.1016/j.ultsonch.2016.06.036.
  • Cruz, J.; Leitão, A.; Silveira, D.; Pichandi, S.; Pinto, M.; Fangueiro, R. Study of Moisture Absorption Characteristics of Cotton Terry Towel Fabrics. Procedia Eng. 2017, 200, 389–398. DOI: 10.1016/j.proeng.2017.07.055.
  • Sun, T. Key Models of Heat and Mass Transfer of Asphalt Mixtures Based on Microwave Heating. Drying Technol. 2014, 32, 1568–1574. DOI: 10.1080/07373937.2014.909842.
  • Li, X-j.; Li, W-j.; Zhang, B-g. Microwave Vacuum Drying Characteristics of Pinus Massoniana Wood. For. Stud. China 2007, 9, 63–67. DOI: 10.1007/s11632-007-0011-5.
  • Zhu, J.-F.; Liu, J.-Z.; Wu, J.-H.; Cheng, J.; Zhou, J.-H.; Cen, K.-F. Thin-Layer Drying Characteristics and Modeling of Ximeng Lignite under Microwave Irradiation. Fuel Process. Technol. 2015, 130, 62–70. DOI: 10.1016/j.fuproc.2014.09.033.
  • Tham, T. C.; Ng, M. X.; Ong, S. P.; Hii, C. L.; Law, C. L. Application of Microwave-Assisted Drying on Specific Energy Consumption, Effective Diffusion Coefficient and Topological Changes of Crumb Natural Rubber (Cis-1, 4- Polyisoprene). Chem. Eng. Process. Process Intensif. 2018, 128, 19–35. DOI: 10.1016/j.cep.2018.04.004.
  • Akgun, N. A.; Doymaz, I. Modelling of Olive Cake Thin-Layer Drying Process. J. Food Eng. 2005, 68, 455–461. DOI: 10.1016/j.jfoodeng.2004.06.023.
  • Dadalı, G.; Apar, D. K.; Özbek, B. Estimation of Effective Moisture Diffusivity of Okra for Microwave Drying. Dry. Technol. 2007, 25, 1445–1450. DOI: 10.1080/07373930701536767.
  • Wang, Z.; Sun, J.; Chen, F.; Liao, X.; Hu, X. Mathematical Modelling on Thin Layer Microwave Drying of Apple Pomace with and without Hot Air Pre-Drying. J. Food Eng. 2007, 80, 536–544. DOI: 10.1016/j.jfoodeng.2006.06.019.
  • Onwude, D. I.; Hashim, N.; Janius, R. B.; Nawi, N. M.; Abdan, K. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. DOI: 10.1111/1541-4337.12196.
  • Rayaguru, K.; Routray, W. Microwave Drying Kinetics and Quality Characteristics of Aromatic Pandanus Amaryllifolius Leaves. Int. Food Res. J. 2011, 18, 1035–1042.
  • Acevedo, L.; Usón, S.; Uche, J. Numerical Study of Cullet Glass Subjected to Microwave Heating and SiC Susceptor Effects. Part I: Combined Electric and Thermal Model. Energy Convers. Manage. 2015, 97, 439–457. DOI: 10.1016/j.enconman.2015.03.053.
  • Datta, A. K. Handbook of Microwave Technology for Food Application; CRC Press: Boca Raton, 2001. DOI: 10.1201/b19397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.