Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 7
323
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Drying characteristics and kinetics analyses for Yimin lignite at various temperatures

, , &
Pages 912-924 | Received 31 Oct 2019, Accepted 10 Feb 2020, Published online: 20 Feb 2020

References

  • Kotowicz, J.; Balicki, A. Enhancing the Overall Efficiency of a Lignite-Fired Oxyfuel Power Plant with CFB Boiler and Membrane-Based Air Separation Unit. Energy Convers. Manage. 2014, 80, 20–31. DOI: 10.1016/j.enconman.2013.12.069.
  • Tahmasebi, A.; Yu, J.; Su, H.; Han, Y.; Lucas, J.; Zheng, H.; Wall, T. A Differential Scanning Calorimetric (DSC) Study on the Characteristics and Behavior of Water in Low-Rank Coals. Fuel 2014, 135, 243–252. DOI: 10.1016/j.fuel.2014.06.068.
  • Liu, M.; Yan, J.; Bai, B.; Chong, D.; Guo, X.; Xiao, F. Theoretical Study and Case Analysis for a Predried Lignite-Fired Power System. Drying Technol. 2011, 29, 1219–1229. DOI: 10.1080/07373937.2011.582559.
  • Xiang, F.; He, Y.; Kumar, S.; Wang, Z.; Liu, L.; Huang, Z.; Liu, J.; Cen, K. Influence of Hydrothermal Dewatering on Trace Element Transfer in Yimin Coal. Appl. Therm. Eng. 2017, 117, 675–681. DOI: 10.1016/j.applthermaleng.2016.12.100.
  • Zhao, P.; Zhong, L.; Zhao, Y.; Luo, Z. Comparative Studies on the Effect of Mineral Matter on Physico-Chemical Properties, Inherent Moisture and Drying Kinetics of Chinese Lignite. Energy Convers. Manage. 2015, 93, 197–204. DOI: 10.1016/j.enconman.2015.01.020.
  • Yi, Q.; Feng, J.; Lu, B.; Deng, J.; Yu, C.; Li, W. Energy Evaluation for Lignite Pyrolysis by Solid Heat Carrier Coupled with Gasification. Energy Fuels 2013, 27, 4523–4533. DOI: 10.1021/ef400865h.
  • Liu, M.; Zhang, X.; Ma, Y.; Yan, J. Thermo-Economic Analyses on a New Conceptual System of Waste Heat Recovery Integrated with an S-CO2 Cycle for Coal-Fired Power Plants. Energy Convers. Manage. 2018, 161, 243–253. DOI: 10.1016/j.enconman.2018.01.049.
  • Wang, C.; Zhao, Y.; Liu, M.; Qiao, Y.; Chong, D.; Yan, J. Peak Shaving Operational Optimization of Supercritical Coal-Fired Power Plants by Revising Control Strategy for Water-Fuel Ratio. Appl. Energy 2018, 216, 212–223. DOI: 10.1016/j.apenergy.2018.02.039.
  • Wang, C.; Qiao, Y.; Liu, M.; Zhao, Y.; Yan, J. Enhancing Peak Shaving Capability by Optimizing Reheat-Steam Temperature Control of a Double-Reheat Boiler. Appl. Energy 2020, 260, 114341–114341. DOI: 10.1016/j.apenergy.2019.114341.
  • Liu, M.; Xu, C.; Han, X.; Liu, R.; Qin, Y.; Yan, J. Integration of Evaporative Dryers into Lignite-Fired Power Plants: A Review. Drying Technol. 2019, 1–19. DOI: 10.1080/07373937.2019.1606824.
  • Liu, R.; Liu, M.; Fan, P.; Zhao, Y.; Yan, J. Thermodynamic Study on a Novel Lignite Poly-Generation System of Electricity-Gas-Tar Integrated with Pre-Drying and Pyrolysis. Energy 2018, 165, 140–152. DOI: 10.1016/j.energy.2018.09.169.
  • Zhang, W.; Cheng, X.; Hu, Y.; Yan, Y. Online Prediction of Biomass Moisture Content in a Fluidized Bed Dryer Using Electrostatic Sensor Arrays and the Random Forest Method. Fuel 2019, 239, 437–445. DOI: 10.1016/j.fuel.2018.11.049.
  • Umar, D.; Usui, H.; Daulay, B. Effects of Processing Temperature of Hot Water Drying on the Properties and Combustion Characteristics of an Indonesian Low Rank Coal. Coal Preparation 2005, 25, 313–322. DOI: 10.1080/07349340500444554.
  • Bergins, C. Kinetics and Mechanism during Mechanical/Thermal Dewatering of Lignite. Fuel 2003, 82, 355–364. DOI: 10.1016/S0016-2361(02)00310-1.
  • Liu, M.; Li, G.; Han, X.; Qin, Y.; Zhai, M.; Yan, J. Energy and Exergy Analyses of a Lignite-Fired Power Plant Integrated with a Steam Dryer at Rated and Partial Loads. Drying Technol. 2017, 2, 203–217. DOI: 10.1080/07373937.2016.1166438.
  • Kakaras, E.; Ahladas, P.; Syrmopoulos, S. Computer Simulation Studies for the Integration of an External Dryer into a Greek Lignite-Fired Power Plant. Fuel 2002, 81, 583–593. DOI: 10.1016/S0016-2361(01)00146-6.
  • Han, X.; Liu, M.; Wang, J.; Yan, J.; Liu, J.; Xiao, F. Simulation Study on Lignite-Fired Power System Integrated with Flue Gas Drying and Waste Heat Recovery–Performances under Variable Power Loads Coupled with off-Design Parameters. Energy 2014, 76, 406–418. DOI: 10.1016/j.energy.2014.08.032.
  • Ma, Y.; Yuan, Y.; Jin, J.; Zhang, H.; Hu, X.; Shi, D. An Environment Friendly and Efficient Lignite-Fired Power Generation Process Based on a Boiler with an Open Pulverizing System and the Recovery of Water from Mill-Exhaust. Energy 2013, 59, 105–115. DOI: 10.1016/j.energy.2013.06.073.
  • Han, X.; Liu, M.; Yan, J.; Karellas, S.; Wang, J.; Xiao, F. Thermodynamic Analysis of an Improved Flue Gas Pre-Dried Lignite-Fired Power System Integrated with Water Recovery and Drying Exhaust Gas Recirculation. Drying Technol. 2019, 1–17. DOI: 10.1080/07373937.2019.1607871.
  • Hu, S.; Man, C.; Gao, X.; Zhang, J.; Xu, X.; Che, D. Energy Analysis of Low-Rank Coal Pre-Drying Power Generation Systems. Drying Technol. 2013, 31, 1194–1205. DOI: 10.1080/07373937.2013.775146.
  • Liu, M.; Yan, J.; Chong, D.; Liu, J.; Wang, J. Thermodynamic Analysis of Pre-Drying Methods for Pre-Dried Lignite-Fired Power Plant. Energy 2013, 49, 107–118. DOI: 10.1016/j.energy.2012.10.026.
  • Jin, L.; Li, Y.; Lin, L.; Zou, L.; Hu, H. Drying Characteristic and Kinetics of Huolinhe Lignite in Nitrogen and Methane Atmospheres. Fuel 2015, 152, 80–87. DOI: 10.1016/j.fuel.2015.01.035.
  • Abhari, R.; Isaacs, L. Drying Kinetics of Lignite, Subbituminous Coals, and High-Volatile Bituminous Coals. Energy Fuels 1990, 4, 448–452. DOI: 10.1021/ef00023a007.
  • Park, J.; Lee, C.; Park, Y.; Shun, D.; Bae, D.; Park, J. Drying Efficiency of Indonesian Lignite in a Batch-Circulating Fluidized Bed Dryer. Drying Technol. 2014, 32, 268–278. DOI: 10.1080/07373937.2013.822385.
  • Komatsu, Y.; Sciazko, A.; Zakrzewski, M.; Kimijima, S.; Hashimoto, A.; Kaneko, S.; Szmyd, J. S. An Experimental Investigation on the Drying Kinetics of a Single Coarse Particle of Belchatow Lignite in an Atmospheric Superheated Steam Condition. Fuel Process. Technol. 2015, 131, 356–369. DOI: 10.1016/j.fuproc.2014.12.005.
  • Zhao, H.; Li, Y.; Song, Q.; Wang, X.; Shu, X. Drying, Re-Adsorption Characteristics, and Combustion Kinetics of Xilingol Lignite in Different Atmospheres. Fuel 2017, 210, 592–604. DOI: 10.1016/j.fuel.2017.09.011.
  • Xu, Y.; Qin, X.; Zhang, G.; Zhang, Y. An Experimental Investigation on the Drying Characteristics and Kinetics of Baorixile Lignite in a Fixed Bed. Fuel 2019, 253, 1317–1324. DOI: 10.1016/j.fuel.2019.05.121.
  • Gao, M.; Wan, K.; Miao, Z.; He, Q.; Ji, P.; Pei, Z. Hot-Air Drying Behavior and Fragmentation Characteristic of Single Lignite Particle. Fuel 2019, 247, 209–216. DOI: 10.1016/j.fuel.2019.03.055.
  • Chen, W.; Lei, Y.; Annamalai, K.; Sun, J. Analysis of d2 Law in Case of Shengli Lignite Drying under Inert and Uninert Environment. Drying Technol. 2018, 36, 448–458. DOI: 10.1080/07373937.2017.1340304.
  • Zheng, H.-J.; Zhang, S.-Y.; Guo, X.; Lu, J.-F.; Dong, A.-X.; Deng, W.-X.; Tang, W.-J.; Zhao, M.-H.; Jin, T. An Experimental Study on the Drying Kinetics of Lignite in High Temperature Nitrogen Atmosphere. Fuel Process. Technol. 2014, 126, 259–265. DOI: 10.1016/j.fuproc.2014.05.009.
  • Wen, Y.; Liao, J.; Liu, X.; Wei, F.; Chang, L. Removal Behaviors of Moisture in Raw Lignite and Moisturized Coal and Their Dewatering Kinetics Analysis. Drying Technol. 2017, 35, 88–96. DOI: 10.1080/07373937.2016.1160246.
  • Vyazovkin, S. Model-Free Kinetics Staying Free of Multiplying Entities without Necessity. J. Therm. Anal. Calorim. 2006, 83, 45–51. DOI: 10.1007/s10973-005-7044-6.
  • Ali, I.; Naqvi, S.; Bahadar, A. Kinetic Analysis of Botryococcus Braunii Pyrolysis Using Model-Free and Model Fitting Methods. Fuel 2018, 214, 369–380. DOI: 10.1016/j.fuel.2017.11.046.
  • Chen, D.; Wang, Y.; Liu, Y.; Cen, K.; Cao, X.; Ma, Z.; Li, Y. Comparative Study on the Pyrolysis Behaviors of Rice Straw under Different Washing Pretreatments of Water, Acid Solution, and Aqueous Phase Bio-Oil by Using TG-FTIR and PY-GC/MS. Fuel 2019, 252, 1–9. DOI: 10.1016/j.fuel.2019.04.086.
  • Saxena, S. C. Devolatilization and Combustion Characteristics of Coal Particles. Prog. Energy Combust. Sci. 1990, 16, 55–94. DOI: 10.1016/0360-1285(90)90025-X.
  • Jones, I. W. Recent Developments in the Thermal Treatment of Coal. J. Inst. Fuel 1951, 24, 69–75.
  • Hu, R.; Shi, Q. Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing, China, 2008; pp. 91–93 (in Chinese).
  • Doskocil, L.; Enev, V.; Grasset, L.; Wasserbauer, J. The Characterization of South Moravian Lignite in Its Natural and Treated Forms Using Thermal Degradation Methods. J. Anal. Appl. Pyrolysis 2017, 128, 83–91. DOI: 10.1016/j.jaap.2017.10.022.
  • Lin, X.; Wang, C.; Ideta, K.; Miyawaki, J.; Nishiyama, Y.; Wang, Y.; Yoon, S.; Mochida, I. Insights into the Functional Group Transformation of a Chinese Brown Coal during Slow Pyrolysis by Combining Various Experiments. Fuel 2014, 118, 257–264. DOI: 10.1016/j.fuel.2013.10.081.
  • Feng, X.; Zhang, X.; Tan, P.; Zhang, X.; Fang, X.; Chen, G. Experimental Study of the Physicochemical Structure and Moisture Readsorption Characteristics of Zhaotong Lignite after Hydrothermal and Thermal Upgrading. Fuel 2016, 185, 112–121. DOI: 10.1016/j.fuel.2016.07.101.
  • Man, C.; Zhu, X.; Gao, X.; Che, D. Combustion and Pollutant Emission Characteristics of Lignite Dried by Low Temperature Air. Drying Technol. 2015, 33, 616–631. DOI: 10.1080/07373937.2014.967402.
  • Yang, Y.; Jing, X.; Li, Z.; Liu, X.; Zhang, Y.; Chang, L. Effect of Drying Conditions on Moisture Re-Adsorption Performance of Dewatered Lignite. Drying Technol. 2013, 31, 1430–1437. DOI: 10.1080/07373937.2013.797429.
  • Sun, X. The Investigation of Chemical Structure of Coal Macerals via Transmitted-Light FT-IR Microspectroscopy. Spectrochim. Acta 2005, 62, 557–564.
  • Ahmed, M.; Blesa, M.; Juan, R.; Vandenberghe, R. Characterisation of an Egyptian Coal by Mossbauer and FT-IR Spectroscopy. Fuel 2003, 82, 1825–1829. DOI: 10.1016/S0016-2361(03)00131-5.
  • Geng, W.; Nakajima, T.; Takanashi, H.; Ohki, A. Analysis of Carboxyl Group in Coal and Coal Aromaticity by Fourier Transform Infrared (FT-IR) Spectrometry. Fuel 2009, 88, 139–144. DOI: 10.1016/j.fuel.2008.07.027.
  • Alessio, A.; Vergamini, P.; Benedetti, E. FT-IR Investigation of the Structural Changes of Sulcis and South Africa Coals under Progressive Heating in Vacuum. Fuel 2000, 79, 1215–1220. DOI: 10.1016/S0016-2361(99)00257-4.
  • Georgakopoulos, A. Study of Low Rank Greek Coals Using FTIR Spectroscopy. Energy Sources 2003, 25, 995–1005. DOI: 10.1080/00908310390232442.
  • He, Q.; Chen, J.; Miao, Z.; Wan, K.; Tian, J.; Chen, Z.; Wan, Y. Thermal Fragmentation and Pulverization Properties of Lignite in Drying Process and Its Mechanism. Drying Technol. 2018, 36, 1404–1412. DOI: 10.1080/07373937.2017.1405436.
  • Feng, L.; Tang, J.; Ma, Z.; Wan, Y. Effect of Mechanical Thermal Expression Drying Technology on Lignite Structure. Drying Technol. 2017, 35, 356–362. DOI: 10.1080/07373937.2016.1174938.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.