Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 7
248
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Hybrid mixture theory-based modeling of moisture transport coupled with quality changes in strawberries and carrots

&
Pages 932-949 | Received 01 Oct 2019, Accepted 18 Feb 2020, Published online: 28 Feb 2020

References

  • Rajkumar, G.; Shanmugam, S.; Galvâo, M.; de, S.; Neta, M. T. S. L.; Sandes, R. D. D.; Mujumdar, A. S.; Narain, N. Comparative Evaluation of Physical Properties and Aroma Profile of Carrot Slices Subjected to Hot Air and Freeze Drying. Dry. Technol. 2017, 35, 699–708. DOI: 10.1080/07373937.2016.1206925.
  • Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The Effect of Pulsed Electric Field on Drying Kinetics, Color, and Microstructure of Carrot. Dry. Technol. 2016, 34, 1286–1296. DOI: 10.1080/07373937.2015.1105813.
  • Gamboa-Santos, J.; Montilla, A.; Carcel, J. A.; Villamiel, M.; Garcia-Perez, J. V. Air-Borne Ultrasound Application in the Convective Drying of Strawberry. J. Food Eng. 2014, 128, 132–139. DOI: 10.1016/j.jfoodeng.2013.12.021.
  • Gamboa-Santos, J.; Analia Campanone, L. Application of Osmotic Dehydration and Microwave Drying to Strawberries Coated with Edible Films. Dry. Technol. 2019, 37, 1002–1012. DOI: 10.1080/07373937.2018.1481426.
  • de Bruijn, J.; Borquez, R. Quality Retention in Strawberries Dried by Emerging Dehydration Methods. Food Res. Int. 2014, 63, 42–48. DOI: 10.1016/j.foodres.2014.03.029.
  • Hernandez-Santos, B.; Martinez-Sanchez, C. E.; Torruco-Uco, J. G.; Rodriguez-Miranda, J.; Ruiz-Lopez, I. I.; Vajando-Anaya, E. S.; Carmona-Garcia, R.; Herman-Lara, E. Evaluation of Physical and Chemical Properties of Carrots Dried by Refractance Window Drying. Dry. Technol. 2016, 34, 1414–1422. DOI: 10.1080/07373937.2015.1118705.
  • Hu, X.; Kurian, J.; Gariepy, Y.; Raghavan, V. Optimization of Microwave-Assisted Fluidized-Bed Drying of Carrot Slices. Dry. Technol. 2017, 35, 1234–1248. DOI: 10.1080/07373937.2016.1242014.
  • Ozturk, O. K.; Takhar, P. S. Water Transport in Starchy Foods: Experimental and Mathematical Aspects. Trends Food Sci. Technol. 2018, 78, 11–24. DOI: 10.1016/j.tifs.2018.05.015.
  • Takhar, P. S. Role of Glass-Transition on Fluid Transport in Porous Food Materials. Int. J. Food Eng. 2008, 4, 1–15.
  • Takhar, P. S.; Maier, D. E.; Campanella, O. H.; Chen, G. Hybrid Mixture Theory Based Moisture Transport and Stress Development in Corn Kernels during Drying: Validation and Simulation Results. J. Food Eng. 2011, 106, 275–282. DOI: 10.1016/j.jfoodeng.2011.05.006.
  • Singh, P. P.; Cushman, J. H.; Maier, D. E. Multiscale Fluid Transport Theory for Swelling Biopolymers. Chem. Eng. Sci. 2003, 58, 2409–2419. DOI: 10.1016/S0009-2509(03)00084-8.
  • Bennethum, L. S.; Cushman, J. H. Multiscale, Hybrid Mixture Theory for Swelling Systems.1. Balance Laws. Int. J. Eng. Sci. 1996, 34, 125–145. DOI: 10.1016/0020-7225(95)00089-5.
  • Singh, P. P.; Cushman, J. H.; Maier, D. E. Three Scale Thermomechanical Theory for Swelling Biopolymeric Systems. Chem. Eng. Sci. 2003, 58, 4017–4035. 10.1016/S0009-2509(03)00283-5.
  • Takhar, P. S. Unsaturated Fluid Transport in Swelling Poroviscoelastic Biopolymers. Chem. Eng. Sci. 2014, 109, 98–110. DOI: 10.1016/j.ces.2014.01.016.
  • Christensen, R. M., Ed. Theory of Viscoelasticity, 2nd ed.; Academic Press: NY, 1982. 10.1016/B978-0-12-174252-2.50001-6.
  • Takhar, P. S. Hybrid Mixture Theory Based Moisture Transport and Stress Development in Corn Kernels during Drying: Coupled Fluid Transport and Stress Equations. J. Food Eng. 2011, 105, 663–670. DOI: 10.1016/j.jfoodeng.2011.03.033.
  • Ozturk, O. K.; Takhar, P. S. Selected Physical and Viscoelastic Properties of Strawberries as a Function of Heated-Air Drying Conditions. Dry. Technol. 2019, 37, 1833–1843. DOI: 10.1080/07373937.2018.1543701.
  • Ozturk, O. K.; Takhar, P. S. Physical and Viscoelastic Properties of Carrots during Drying. J. Texture Stud. 2019, 1–10. DOI: 10.1111/jtxs.12496.
  • Eringen, A. C. Mechanics of Continua, 2nd ed.; R. E. Krieger Pub. Co: Huntington, NY, 1980.
  • Steffe, J. F. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: East Lansing, MI, 1996.
  • Kiranoudis, C. T.; Maroulis, Z. B.; Tsami, E.; Marinos-Kouris, D. Equilibrium Moisture-Content and Heat of Desorption of Some Vegetables. J. Food Eng. 1993, 20, 55–74. DOI: 10.1016/0260-8774(93)90019-G.
  • Doymaz, I. Convective Drying Kinetics of Strawberry. Chem. Eng. Process. 2008, 47, 914–919. DOI: 10.1016/j.cep.2007.02.003.
  • Zielinska, M.; Markowski, M. Drying Behavior of Carrots Dried in a Spout-Fluidized Bed Dryer. Dry. Technol. 2007, 25, 261–270. DOI: 10.1080/07373930601161138.
  • Viberg, U.; Freuler, S.; Gekas, V.; Sjöholm, I. Osmotic Pretreatment of Strawberries and Shrinkage Effects. J. Food Eng. 1998, 35, 135–145. DOI: 10.1016/S0260-8774(98)00006-5.
  • Buhri, A. B.; Singh, R. P. Measurement of Food Thermal Conductivity Using Differential Scanning Calorimetry. J. Food Sci. 1993, 58, 1145–1147. DOI: 10.1111/j.1365-2621.1993.tb06134.x.
  • Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. Properties of Gases and Liquids, 5th ed.; McGraw-Hill Education: New York, 2001.
  • Moraga, G.; Martı́nez-Navarrete, N.; Chiralt, A. Water Sorption Isotherms and Glass Transition in Strawberries: Influence of Pretreatment. J. Food Eng. 2004, 62, 315–321. DOI: 10.1016/S0260-8774(03)00245-0.
  • Georget, D. M. R.; Smith, A. C.; Waldron, K. W. Thermal Transitions in Freeze-Dried Carrot and Its Cell Wall Components. Thermochim. Acta 1999, 332, 203–210. DOI: 10.1016/S0040-6031(99)00075-1.
  • Karmas, R.; Buera, M.; Karel, M. Effect of Glass-Transition on Rates of Nonenzymatic Browning in Food Systems. J. Agric. Food Chem. 1992, 40, 873–879. DOI: 10.1021/jf00017a035.
  • Singh, P. P.; Maier, D. E.; Cushman, J. H.; Haghighi, K.; Corvalan, C. Effect of Viscoelastic Relaxation on Moisture Transport in Foods. Part I: Solution of General Transport Equation. J. Math. Biol. 2004, 49, 1–19. DOI: 10.1007/s00285-003-0249-z.
  • Verbeyst, L.; Bogaerts, R.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food Bioprocess Technol. 2013, 6, 1015–1023. DOI: 10.1007/s11947-012-0784-y.
  • Agar, I. T.; Streif, J.; Bangerth, F. Effect of High CO2 and Controlled Atmosphere (CA) on the Ascorbic and Dehydroascorbic Acid Content of Some Berry Fruits. Postharvest Biol. Technol. 1997, 11, 47–55. DOI: 10.1016/S0925-5214(97)01414-2.
  • Colle, I. J. P.; Lemmens, L.; Knockaert, G.; Van Loey, A.; Hendrickx, M. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects. Crit. Rev. Food Sci. Nutr. 2016, 56, 1844–1855. DOI: 10.1080/10408398.2013.790779.
  • Chen, H. E.; Peng, H. Y.; Chen, B. H. Stability of Carotenoids and Vitamin a during Storage of Carrot Juice. Food Chem. 1996, 57, 497–503. DOI: 10.1016/S0308-8146(96)00008-8.
  • Sulaeman, A.; Keeler, L.; Giraud, D. W.; Taylor, S. L.; Wehling, R. L.; Driskell, J. A. Carotenoid Content and Physicochemical and Sensory Characteristics of Carrot Chips Deep-Fried in Different Oils at Several Temperatures. J. Food Sci. 2001, 66, 1257–1264. DOI: 10.1111/j.1365-2621.2001.tb15198.x.
  • Contreras, C.; Martin-Esparza, M. E.; Chiralt, A.; Martinez-Navarrete, N. Influence of Microwave Application on Convective Drying: Effects on Drying Kinetics, and Optical and Mechanical Properties of Apple and Strawberry. J. Food Eng. 2008, 88, 55–64. DOI: 10.1016/j.jfoodeng.2008.01.014.
  • Doymaz, I. Infrared Drying Kinetics and Quality Characteristics of Carrot Slices. J. Food Process. Preserv. 2015, 39, 2738–2745. DOI: 10.1111/jfpp.12524.
  • Mosquera, L. H.; Moraga, G.; Martinez-Navarrete, N. Critical Water Activity and Critical Water Content of Freeze-Dried Strawberry Powder as Affected by Maltodextrin and Arabic Gum. Food Res. Int. 2012, 47, 201–206. DOI: 10.1016/j.foodres.2011.05.019.
  • Singh, P. P.; Maier, D. E.; Cushman, J. H.; Campanella, O. H. Effect of Viscoelastic Relaxation on Moisture Transport in Foods. Part II: Sorption and Drying of Soybeans. J. Math. Biol. 2004, 49, 20–34. DOI: 10.1007/s00285-003-0250-6.
  • Kim, D. J.; Caruthers, J. M.; Peppas, N. A. Experimental Verification of a Predictive Model of Penetrant Transport in Glassy Polymers. Chem. Eng. Sci. 1996, 51, 4827–4841. DOI: 10.1016/0009-2509(96)00315-6.
  • Achanta, S.; Okos, M. R.; Cushman, J. H.; Kessler, D. P. Moisture Transport in Shrinking Gels during Saturated Drying. AICHE J. 1997, 43, 2112–2122. DOI: 10.1002/aic.690430818.
  • Orak, H. H.; Aktas, T.; Yagar, H.; Isbilir, S. S.; Ekinci, N.; Sahin, F. H. Effects of Hot Air and Freeze Drying Methods on Antioxidant Activity, Colour and Some Nutritional Characteristics of Strawberry Tree (Arbutus Unedo L) Fruit. Food Sci. Technol. Int. 2012, 18, 391–402. DOI: 10.1177/1082013211428213.
  • Aversa, M.; Curcio, S.; Calabro, V.; Iorio, G. Experimental Evaluation of Quality Parameters during Drying of Carrot Samples. Food Bioprocess Technol. 2012, 5, 118–129. DOI: 10.1007/s11947-009-0280-1.
  • Siebert, T.; Zuber, M.; Engelhardt, S.; Baumbach, T.; Karbstein, H. P.; Gaukel, V. Visualization of Crust Formation during Hot-Air-Drying via Micro-CT. Dry. Technol. 2019, 37, 1881–1890. DOI: 10.1080/07373937.2018.1539746.
  • Siebert, T.; Gall, V.; Karbstein, H. P.; Gaukel, V. Serial Combination Drying Processes: A Measure to Improve Quality of Dried Carrot Disks and to Reduce Drying Time. Dry. Technol. 2018, 36, 1578–1591. DOI: 10.1080/07373937.2017.1418374.
  • Serpen, A.; Gökmen, V. Reversible Degradation Kinetics of Ascorbic Acid under Reducing and Oxidizing Conditions. Food Chem. 2007, 104, 721–725. DOI: 10.1016/j.foodchem.2006.11.073.
  • Oey, I.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M. Does High Pressure Processing Influence Nutritional Aspects of Plant Based Food Systems?. Trends Food Sci. Technol. 2008, 19, 300–308. DOI: 10.1016/j.tifs.2007.09.002.
  • Chen, B. H.; Huang, J. H. Degradation and Isomerization of Chlorophyll a and Beta-Carotene as Affected by Various Heating and Illumination Treatments. Food Chem. 1998, 62, 299–307. DOI: 10.1016/S0308-8146(97)00201-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.