Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 8
366
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Comparison of moisture uniformity between microwave-vacuum and hot-air dried ginger slices using hyperspectral information combined with semivariogram

, &
Pages 1044-1058 | Received 22 Jan 2020, Accepted 08 Mar 2020, Published online: 19 Mar 2020

References

  • Bartley, J. P.; Jacobs, A. L. Effects of Drying on Flavour Compounds in Australian-Grown Ginger (Zingiber officinale). J. Sci. Food Agric. 2000, 80, 209–215. DOI: 10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8.
  • Ko, M.-J.; Nam, H.-H.; Chung, M.-S. Conversion of 6-Gingerol to 6-Shogaol in Ginger (Zingiber officinale) Pulp and Peel during Subcritical Water Extraction. Food Chem. 2019, 270, 149–155. DOI: 10.1016/j.foodchem.2018.07.078.
  • Phoungchandang, S.; Saentaweesuk, S. Effect of Two Stage, Tray and Heat Pump Assisted-Dehumidified Drying on Drying Characteristics and Qualities of Dried Ginger. Food Bioprod. Process 2011, 89, 429–437. DOI: 10.1016/j.fbp.2010.07.006.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197, 1292–1300. DOI: 10.1016/j.foodchem.2015.11.033.
  • Patel, K. K.; Kar, A. Heat Pump Assisted Drying of Agricultural Produce - An Overview. J. Food Sci. Technol. 2012, 49, 142–160. DOI: 10.1007/s13197-011-0334-z.
  • Alibas, I. Microwave, Air and Combined Microwave-Air-Drying Parameters of Pumpkin Slices. LWT-Food Sci. Technol. 2007, 40, 1445–1451. DOI: 10.1016/j.lwt.2006.09.002.
  • Zhang, M.; Jiang, H.; Lim, R.-X. Recent Developments in Microwave-Assisted Drying of Vegetables, Fruits, and Aquatic Products-Drying Kinetics and Quality Considerations. Drying Technol. 2010, 28, 1307–1316. DOI: 10.1080/07373937.2010.524591.
  • Sunjka, P. S.; Rennie, T. J.; Beaudry, C.; Raghavan, G. S. V. Microwave-Convective and Microwave-Vacuum Drying of Cranberries: A Comparative Study. Drying Technol. 2004, 22, 1217–1231. DOI: 10.1081/DRT-120038588.
  • Cui, Z.-W.; Xu, S.-Y.; Sun, D.-W.; Chen, W. Dehydration of Concentrated Ganoderma lucidum Extraction by Combined Microwave-Vacuum and Conventional Vacuum Drying. Drying Technol. 2006, 24, 595–599. DOI: 10.1080/07373930600626792.
  • Giri, S. K.; Prasad, S. Drying Kinetics and Rehydration Characteristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. J. Food Eng. 2007, 78, 512–521. DOI: 10.1016/j.jfoodeng.2005.10.021.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food Processing - A Review. Food Res. Int. 2013, 52, 243–261. DOI: 10.1016/j.foodres.2013.02.033.
  • Liu, Y.; Pu, H.; Sun, D.-W. Hyperspectral Imaging Technique for Evaluating Food Quality and Safety during Various Processes: A Review of Recent Applications. Trends Food Sci. Technol. 2017, 69, 25–35. DOI: 10.1016/j.tifs.2017.08.013.
  • Ma, J.; Pu, H.; Sun, D.-W. Predicting Intramuscular Fat Content Variations in Boiled Pork Muscles by Hyperspectral Imaging Using a Novel Spectral Pre-processing Technique. LWT-Food Sci. Technol. 2018; 94, 119–128.
  • Cheng, J.-H.; Sun, D.-W.; Pu, H. Combining the Genetic Algorithm and Successive Projection Algorithm for the Selection of Feature Wavelengths to Evaluate Exudative Characteristics in Frozen–thawed Fish Muscle. Food Chem. 2016; 197, 855–863.
  • Yang, Q.; Sun, D.-W.; Cheng, W. Development of Simplified Models for Nondestructive Hyperspectral Imaging Monitoring of TVB-N Contents in Cured Meat During Drying Process. J. Food Eng. 2017; 192, 53–60.
  • Kamruzzaman, M.; Sun, D.-W.; ElMasry, G.; Allen, P. Fast Detection and Visualization of Minced Lamb Meat Adulteration Using NIR Hyperspectral Imaging and Multivariate Image Analysis. Talanta 2013; 103, 130–136. doi:10.1016/j.talanta.2012.10.020
  • Xie, A.; Sun, D.-W.; Xu, Z.; Zhu, Z. Rapid Detection of Frozen Pork Quality without Thawing by VIS–NIR Hyperspectral Imaging Technique. Talanta 2015; 139, 208–215. doi:10.1016/j.talanta.2015.02.027
  • Xiong, Z.; Sun, D.-W.; Pu, H.; Xie, A.; Han, Z.; Luo, M. Non-Destructive Prediction of Thiobarbituric Acid Reactive Substances (TBARS) Value for Freshness Evaluation of Chicken Meat Using Hyperspectral Imaging. Food Chem. 2015; 179, 175–181.
  • Ma, J.; Sun, D.-W.; Pu, H. Model Improvement for Predicting Moisture Content (MC) in Pork Longissimus Dorsi Muscles under Diverse Processing Conditions by Hyperspectral Imaging. J. Food Eng. 2017; 196, 65–72.
  • Pan, Y.; Sun, D.-W.; Cheng, J.-H.; Han, Z. Non-Destructive Detection and Screening of Non-uniformity in Microwave Sterilization Using Hyperspectral Imaging Analysis. Food Anal. Methods 2018; 11(6), 1568–1580. doi:10.1007/s12161-017-1134-5
  • Liu, Y.; Sun, D.-W.; Cheng, J.-H.; Han, Z. Hyperspectral Imaging Sensing of Changes in Moisture Content and Color of Beef during Microwave Heating Process. Food Anal. Methods 2018, 11, 2472–2484. DOI: 10.1007/s12161-018-1234-x.
  • Pu, Y.-Y.; Sun, D.-W. Combined Hot-Air and Microwave-Vacuum Drying for Improving Drying Uniformity of Mango Slices Based on Hyperspectral Imaging Visualisation of Moisture Content Distribution. Biosyst. Eng. 2017, 156, 108–119. DOI: 10.1016/j.biosystemseng.2017.01.006.
  • Lin, X.; Xu, J.-L.; Sun, D.-W. Investigation of Moisture Content Uniformity of Microwave-Vacuum Dried Mushroom (Agaricus bisporus) by NIR Hyperspectral Imaging. LWT-Food Sci. Technol. 2019, 109, 108–117. DOI: 10.1016/j.lwt.2019.03.034.
  • Liu, J.; Ren, G.; Wan, J.; Guo, Y.; Yu, D. Variogram Time-Series Analysis of Wind Speed. Renew. Energy 2016, 99, 483–491. DOI: 10.1016/j.renene.2016.07.013.
  • Gowen, A.; Xu, J.-L.; Herrero-Langreo, A. Comparison of Spectral Selection Methods in the Development of Classification Models from Visible near Infrared Hyperspectral Imaging Data. J. Spectral Imaging 2019, 8, 4–8.
  • Xu, J.-L.; Gowen, A. A. Spatial-Spectral Analysis Method Using Texture Features Combined with PCA for Information Extraction in Hyperspectral Images. J. Chemom. 2019, 34, 3132. DOI: 10.1002/cem.3132.
  • Herrero-Langreo, A.; Gorretta, N.; Tisseyre, B.; Gowen, A.; Xu, J.-L.; Chaix, G.; Roger, J.-M. Using Spatial Information for Evaluating the Quality of Prediction Maps from Hyperspectral Images: A Geostatistical Approach. Anal. Chim. Acta 2019, 1077, 116–128. DOI: 10.1016/j.aca.2019.05.067.
  • Mendoza, F.; Valous, N. A.; Allen, P.; Kenny, T. A.; Ward, P.; Sun, D.-W. Analysis and Classification of Commercial Ham Slice Images Using Directional Fractal Dimension Features. Meat Sci. 2009, 81, 313–320. DOI: 10.1016/j.meatsci.2008.08.009.
  • Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of Convective and Vacuum-Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food Bioprocess Technol. 2014, 7, 829–841. DOI: 10.1007/s11947-013-1130-8.
  • Therdthai, N.; Zhou, W. Characterization of Microwave Vacuum Drying and Hot Air Drying of Mint Leaves (Mentha cordifolia Opiz Ex Fresen). J. Food Eng. 2009, 91, 482–489. DOI: 10.1016/j.jfoodeng.2008.09.031.
  • Sun, Y.; Zhang, M.; Bhandari, B.; Yang, P. Intelligent Detection of Flavor Changes in Ginger during Microwave Vacuum Drying Based on LF-NMR. Food Res. Int. 2019, 119, 417–425. DOI: 10.1016/j.foodres.2019.02.019.
  • Ding, S. H.; An, K. J.; Zhao, C. P.; Li, Y.; Guo, Y. H.; Wang, Z. F. Effect of Drying Methods on Volatiles of Chinese Ginger (Zingiber officinale Roscoe). Food Bioprod. Process 2012, 90, 515–524. DOI: 10.1016/j.fbp.2011.10.003.
  • Li, J.; Bennamoun, L.; Fraikin, L.; Salmon, T.; Toye, D.; Schreinemachers, R.; Léonard, A. Analysis of the Shrinkage Effect on Mass Transfer during Convective Drying of Sawdust/Sludge Mixtures. Drying Technol. 2014, 32, 1706–1717. DOI: 10.1080/07373937.2014.924136.
  • Huang, T.-C.; Chung, C.-C.; Wang, H.-Y.; Law, C.-L.; Chen, H.-H. Formation of 6-Shogaol of Ginger Oil under Different Drying Conditions. Drying Technol. 2011, 29, 1884–1889. DOI: 10.1080/07373937.2011.589554.
  • Valous, N. A.; Mendoza, F.; Sun, D.-W.; Allen, P. Colour Calibration of a Laboratory Computer Vision System for Quality Evaluation of Pre-Sliced Hams. Meat Sci. 2009, 81, 132–141. DOI: 10.1016/j.meatsci.2008.07.009.
  • Pizza sauce spread classification using colour vision and support vector machines By: Du, CJ; Sun, D-W JOURNAL OF FOOD ENGINEERING Vol 66 Pp 137–145 2005
  • Recent advances in the use of computer vision technology in the quality assessment of fresh meats By: Jackman, Patrick; Sun, Da-Wen; Allen, Paul TRENDS IN FOOD SCIENCE & TECHNOLOGY Vol 22 Pp 185–197 2011
  • Sun, D-W; Brosnan, T, Pizza quality evaluation using computer vision - part 1 - Pizza base and sauce spread, JOURNAL OF FOOD ENGINEERING, 57 (2003) 81–89 DOI: 10.1016/S0260-8774(02)00275-3.
  • Pizza quality evaluation using computer vision - Part 2 - Pizza topping analysis By: Sun, D-W; Brosnan, T JOURNAL OF FOOD ENGINEERING Vol 57 Pp 91–95 2003
  • Assessment of cheese browning affected by baking conditions using computer vision By: Wang, HH; Sun, D-W JOURNAL OF FOOD ENGINEERING Vol 56 Pp 339–345 2003
  • Correlating colour to moisture content of large cooked beef joints by computer vision Zheng, Chaoxin; Sun, Da-Wen; Zheng, Liyun JOURNAL OF FOOD ENGINEERING Vol 77 Pp 858–863 2006
  • Feng, Y.-Z.; Sun, D.-W. Near-Infrared Hyperspectral Imaging in Tandem with Partial Least Squares Regression and Genetic Algorithm for Non-Destructive Determination and Visualization of Pseudomonas Loads in Chicken Fillets. Talanta 2013, 109, 74–83. DOI: 10.1016/j.talanta.2013.01.057.
  • Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Non-Destructive Assessment of Instrumental and Sensory Tenderness of Lamb Meat Using NIR Hyperspectral Imaging. Food Chem. 2013, 141, 389–396. DOI: 10.1016/j.foodchem.2013.02.094.
  • Cortés, V.; Rodríguez, A.; Blasco, J.; Rey, B.; Besada, C.; Cubero, S.; Salvador, A.; Talens, P.; Aleixos, N. Prediction of the Level of Astringency in Persimmon Using Visible and near-Infrared Spectroscopy. J. Food Eng. 2017, 204, 27–37. DOI: 10.1016/j.jfoodeng.2017.02.017.
  • Wu, D.; Sun, D.-W.; He, Y. Application of Long-Wave near Infrared Hyperspectral Imaging for Measurement of Color Distribution in Salmon Fillet. Innov. Food Sci. Emerg. Technol. 2012, 16, 361–372. DOI: 10.1016/j.ifset.2012.08.003.
  • Talens, P.; Mora, L.; Morsy, N.; Barbin, D. F.; ElMasry, G.; Sun, D.-W. Prediction of Water and Protein Contents and Quality Classification of Spanish Cooked Ham Using NIR Hyperspectral Imaging. J. Food Eng. 2013, 117, 272–280. DOI: 10.1016/j.jfoodeng.2013.03.014.
  • Barbin, D. F.; ElMasry, G.; Sun, D.-W.; Allen, P.; Morsy, N. Non-Destructive Assessment of Microbial Contamination in Porcine Meat Using NIR Hyperspectral Imaging. Innov. Food Sci. Emerg. Technol. 2013, 17, 180–191. DOI: 10.1016/j.ifset.2012.11.001.
  • Chong, I.-G.; Jun, C.-H. Performance of Some Variable Selection Methods When Multicollinearity is Present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. DOI: 10.1016/j.chemolab.2004.12.011.
  • ElMasry, G.; Iqbal, A.; Sun, D.-W.; Allen, P.; Ward, P. Quality Classification of Cooked, Sliced Turkey Hams Using NIR Hyperspectral Imaging System. J. Food Eng. 2011, 103, 333–344. DOI: 10.1016/j.jfoodeng.2010.10.031.
  • Zhu, F.; Zhang, D.; He, Y.; Liu, F.; Sun, D.-W. Application of Visible and near Infrared Hyperspectral Imaging to Differentiate between Fresh and Frozen-Thawed Fish Fillets. Food Bioprocess Technol. 2013, 6, 2931–2937. DOI: 10.1007/s11947-012-0825-6.
  • Barbin, D. F.; Sun, D.-W.; Su, C. NIR Hyperspectral Imaging as Non-Destructive Evaluation Tool for the Recognition of Fresh and Frozen-Thawed Porcine Longissimus Dorsi Muscles. Innov. Food Sci. Emerg. Technol. 2013, 18, 226–236. DOI: 10.1016/j.ifset.2012.12.011.
  • Mishra, P.; Nordon, A.; Mohd Asaari, M. S.; Lian, G.; Redfern, S. Fusing Spectral and Textural Information in near-Infrared Hyperspectral Imaging to Improve Green Tea Classification Modelling. J. Food Eng. 2019, 249, 40–47. DOI: 10.1016/j.jfoodeng.2019.01.009.
  • Xu, J.-L.; Riccioli, C.; Sun, D.-W. Comparison of Hyperspectral Imaging and Computer Vision for Automatic Differentiation of Organically and Conventionally Farmed Salmon. J. Food Eng. 2017, 196, 170–182. DOI: 10.1016/j.jfoodeng.2016.10.021.
  • Scaman, C. H.; Durance, T. D.; Drummond, L.; Sun, D.-W. Combined Microwave Vacuum Drying. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed. Academic Press: London, UK, 2014; pp 427–445.
  • Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of Different Drying Methods on the Product Quality and Volatile Compounds of Whole Shiitake Mushrooms. Food Chem. 2016, 197, 714–722. DOI: 10.1016/j.foodchem.2015.11.029.
  • Nahimana, H.; Zhang, M. Shrinkage and Color Change during Microwave Vacuum Drying of Carrot. Drying Technol. 2011, 29, 836–847. DOI: 10.1080/07373937.2011.573753.
  • Wang, H.; Zhang, M.; Mujumdar, A. S. Comparison of Three New Drying Methods for Drying Characteristics and Quality of Shiitake Mushroom (Lentinus edodes). Drying Technol. 2014, 32, 1791–1802. DOI: 10.1080/07373937.2014.947426.
  • Luck, W. A. Structure of Water and Aqueous Solutions. Verlag Chemie: Weinheim, Germany, 1974.
  • Zhu, F.; Cheng, S.; Wu, D.; He, Y. Rapid Discrimination of Fish Feeds Brands Based on Visible and Short-Wave near-Infrared Spectroscopy. Food Bioprocess Technol. 2011, 4, 597–602. DOI: 10.1007/s11947-010-0369-6.
  • Pizarro, C.; Esteban-Dı́ez, I.; Nistal, A.-J.; González-Sáiz, J.-M. Influence of Data Pre-Processing on the Quantitative Determination of the Ash Content and Lipids in Roasted Coffee by near Infrared Spectroscopy. Anal. Chim. Acta 2004, 509, 217–227. DOI: 10.1016/j.aca.2003.11.008.
  • Kamruzzaman, M.; Sun, D.-W. Computer Vision Technology for Food Quality Evaluation. In Introduction to Hyperspectral Imaging Technology, 2nd ed.; Sun, D.-W., Ed.; Academic Press: London, UK, 2016; pp 111–139.
  • Vidal, M.; Amigo, J. M. Pre-Processing of Hyperspectral Images. Essential Steps before Image Analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. DOI: 10.1016/j.chemolab.2012.05.009.
  • Lohumi, S.; Lee, S.; Cho, B.-K. Optimal Variable Selection for Fourier Transform Infrared Spectroscopic Analysis of Starch-Adulterated Garlic Powder. Sensors Actuators B: Chem. 2015, 216, 622–628. DOI: 10.1016/j.snb.2015.04.060.
  • Ju, H.-Y.; Law, C.-L.; Fang, X.-M.; Xiao, H.-W.; Liu, Y.-H.; Gao, Z.-J. Drying Kinetics and Evolution of the Sample’s Core Temperature and Moisture Distribution of Yam Slices (Dioscorea alata L.) during Convective Hot-Air Drying. Drying. Technol. 2016, 34, 1297–1306. DOI: 10.1080/07373937.2015.1105814.
  • Lemus-Mondaca, R. A.; Zambra, C. E.; Vega-Gálvez, A.; Moraga, N. O. Coupled 3D Heat and Mass Transfer Model for Numerical Analysis of Drying Process in Papaya Slices. J. Food Eng. 2013, 116, 109–117. DOI: 10.1016/j.jfoodeng.2012.10.050.
  • Webster, R.; Oliver, M. A. Geostatistics for Environmental Scientists. John Wiley & Sons: Chichester, England, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.