Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 10
174
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A pore-network study on the factors influencing the isothermal drying of single- and dual-scale porous media

ORCID Icon &
Pages 1294-1313 | Received 19 Sep 2019, Accepted 10 Mar 2020, Published online: 28 Mar 2020

References

  • Vafai, K. Handbook of Porous Media, 3rd ed.; CRC Press: Florida, 2015.
  • Gostick, J. Random Pore Network Modeling of Fibrous PEMFC Gas Diffusion Media Using Voronoi and Delaunay Tessellations. J. Electrochem. Soc. 2013, 160, 731–743.
  • Konduru, V.; Medici, E.; Allen, J. S. Modeling Thermal Transport in Heterogeneous Porous Media of PEM Fuel Cells Using Pore Network Model. ECS Trans. 2014, 64, 629–637. DOI: 10.1149/06403.0629ecst.
  • Bear, J. Dynamics of Fluids in Porous Media; Dover Publications: New York, 1988.
  • Whitaker, S. The Method of Volume Averaging, Theory and Applications of Transport in Porous Media, 1999 ed.; Israel: Springer, 1999.
  • Golparvar, A.; Zhou, Y.; Wu, K.; Ma, J.; Yu, Z. A Comprehensive Review of Pore Scale Modeling Methodologies for Multiphase Flow in Porous Media. Adv. Geo-Energ. Res. 2018, 2, 418–440. DOI: 10.26804/ager.2018.04.07.
  • Nowicki, S. C.; Davis, H. T.; Scriven, L. E. Microscopic Determination of Transport Parameters in Drying Porous Media. Drying Technol. 1992, 10, 925–946. DOI: 10.1080/07373939208916488.
  • Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. Adv. Heat Transfer 1977, 13, 119–203.
  • Whitaker, S. Heat and Mass Transfer in Granular Porous Media. In Advances in Drying; Mujumdar, A. S., Ed.; Hemisphere Publishing Corporation: Berlin, 1980; pp. 23–61.
  • Chatzis, I.; Dullien, F. Modelling Pore Structure by 2-D and 3-D Networks with Application to Sandstones. J. Can. Petrol. Technol. 1977, 1, 97–108. DOI: 10.2118/77-01-09.
  • Metzger, T. A Personal View on Pore Network Models in Drying Technology. Drying Technol. 2019, 37, 497–512. DOI: 10.1080/07373937.2018.1512502.
  • Prat, M. Percolation Model of Drying under Isothermal Conditions in Porous Media. Int. J. Multiphase Flow 1993, 19, 691–704. DOI: 10.1016/0301-9322(93)90096-D.
  • Laurindo, J. B.; Prat, M. Numerical and Experimental Network Study of Evaporation in Capillary Porous Media-Phase Distributions. Chem. Eng. Sci. 1996, 51, 5171–5185. DOI: 10.1016/S0009-2509(96)00341-7.
  • Laurindo, J. B.; Prat, M. Numerical and Experimental Network Study of Evaporation in Capillary Porous Media-Drying Rates. Chem. Eng. Sci. 1998, 53, 2257–2269. DOI: 10.1016/S0009-2509(97)00348-5.
  • Yiotis, A. G.; Boudouvis, A. G.; Stubos, A. K.; Tsimpanogiannis, I. N.; Yortsos, Y. C. Effect of Liquid Films on the Isothermal Drying of Porous Media. Phys. Rev. E 2003, 68, 037303. DOI: 10.1103/PhysRevE.68.037303.
  • Yiotis, A. G.; Boudouvis, A. G.; Stubos, A. K.; Tsimpanogiannis, I. N.; Yortsos, Y. C. Effect of Liquid Films on the Drying of Porous Media. AIChE J. 2004, 50, 2721–2737. DOI: 10.1002/aic.10265.
  • Prat, M. On the Influence of Pore Shape, Contact Angle and Film Flows on Drying of Capillary Porous Media. Int. J. Heat Mass Transfer 2007, 50, 1455–1468. DOI: 10.1016/j.ijheatmasstransfer.2006.09.001.
  • Metzger, T.; Irawan, A.; Tsotsas, E. Isothermal Drying of Pore Networks: Influence of Friction for Different Pore Structures. Drying Technol. 2007, 25, 49–57. DOI: 10.1080/07373930601152640.
  • Metzger, T.; Tsotsas, E. Viscous Stabilitization of Drying Front: Three-Dimensional Pore Network Simulations. Chem. Eng. Res. Des. 2008, 86, 739–744. DOI: 10.1016/j.cherd.2008.03.003.
  • Segura, L. A.; Toledo, P. G. Pore-Level Modeling of Isothermal Drying of Pore Networks Accounting for Evaporation, Viscous Flow, and Shrinking. Drying Technol. 2005, 23, 2007–2019. DOI: 10.1080/07373930500210457.
  • Yiotis, A. G.; Salin, D.; Tajer, E. S.; Yortsos, Y. C. Analytical Solutions of Drying in Porous Media for Gravity-Stabilized Fronts. Phys. Rev. E 2012, 85, 046308. DOI: 10.1103/PhysRevE.85.046308.
  • Yiotis, A. G.; Salin, D.; Tajer, E. S.; Yortsos, Y. C. Drying in Porous Media with Gravity-Stabilized Fronts: Experimental Results. Phys. Rev. E 2012, 86, 026310. DOI: 10.1103/PhysRevE.86.026310.
  • Geistlinger, H.; Ding, Y.; Apelt, B.; Schlüter, S.; Küchler, M.; Reuter, D.; Vorhauer, N.; Vogel, H. Evaporation Study Based on Micromodel Experiments: Comparison of Theory and Experiment. Water Resour. Res. 2019, 55, 6653–6672. DOI: 10.1029/2018WR024647.
  • Huinink, H. P.; Pel, L.; Michels, M.; Prat, M. Drying Processes in the Presence of Temperature Gradients-Pore-Scale Modeling. Eur. Phys. J. E 2002, 9, 487–498. DOI: 10.1140/epje/i2002-10106-1.
  • Vorhauer, N.; Tran, Q. T.; Metzger, T.; Tsotsas, E.; Prat, M. Experimental Investigation of Drying in a Model Porous Medium: Influence of Thermal Gradients. Drying Technol. 2013, 31, 920–929. DOI: 10.1080/07373937.2012.724750.
  • Kumar, N.; Arakeri, J. H. Investigation on the Effect of Temperature on Evaporative Characteristic Length of a Porous Medium. Drying Technol. 2019, 1–13. DOI: 10.1080/07373937.2019.1626877.
  • Yiotis, A. G.; Tsimpanogiannis, I. N.; Stubos, A. K.; Yortsos, Y. C. Coupling between External and Internal Mass Transfer Drying of a Porous Medium. Water Resour. Res. 2007, 43, W06403.
  • Shaeri, M. R.; Beyhaghi, S.; Pillai, K. M. On Applying an External-Flow Driven Mass Transfer Boundary Condition to Simulate Drying from a Pore-Network Model. Int. J. Heat Mass Transfer 2013, 57, 331–344. DOI: 10.1016/j.ijheatmasstransfer.2012.10.005.
  • Xu, Z. Numerical Simulation of Slow Drying in Porous Media Using Pore Network Model. Doctoral thesis, University of Wisconsin, Milwaukee, 2016.
  • Beyhaghi, S.; Xu, Z.; Pillai, K. M. Achieving the Inside-Outside Coupling during Simulation of Isothermal Drying of a Porous Medium in a Turbulent Flow. Transp. Porous Med. 2016, 114, 823–842. DOI: 10.1007/s11242-016-0746-3.
  • Xu, Z.; Pillai, K. M. Analyzing Slow Drying in a Porous Medium Placed Adjacent to Laminar Air Flow Using a Pore-Network Model. Numer. Heat Transfer Part A 2016, 70, 1213–1231. DOI: 10.1080/10407782.2016.1230432.
  • Surasani, V. K.; Metzger, T.; Tsotsas, E. Drying Simulations of Various 3D Pore Structures by a Nonisothermal Pore Network Model. Drying Technol. 2010, 28, 615–623. DOI: 10.1080/07373931003788676.
  • Vorhauer, N.; Tsotsas, E.; Prat, M. Drying of Thin Porous Disks from Pore Network Simulations. Drying Technol. 2018, 36, 651–663. DOI: 10.1080/07373937.2017.1319853.
  • Vorhauer, N.; Wang, Y. J.; Kharaghani, A.; Tsotsas, E.; Prat, M. Drying with Formation of Capillary Rings in a Model Porous Medium. Transp. Porous Med. 2015, 110, 197–223. DOI: 10.1007/s11242-015-0538-1.
  • Le, K. H.; Kharaghani, A.; Kirsch, C.; Tsotsas, E. Discrete Pore Network Modeling of Superheated Steam Drying. Drying Technol. 2017, 35, 1584–1601. DOI: 10.1080/07373937.2016.1264414.
  • Pillai, K. M.; Prat, M.; Marcoux, M. A Study on Slow Evaporation of Liquids in a Dual-Porosity Porous Medium Using Square Network Model. Int. J. Heat Mass Transfer 2009, 52, 1643–1656. DOI: 10.1016/j.ijheatmasstransfer.2008.10.007.
  • Xu, Z.; Pillai, K. M. Modeling Drying in Thin Porous Media after Coupling Pore-Level Drying Dynamics with External Flow Field. Drying Technol. 2017, 35, 785–801. DOI: 10.1080/07373937.2016.1214596.
  • Patankar, S. V. Numerical Heat Transfer and Fluid Flow; Taylor & Francis: New York, 1980.
  • Versteeg, H. K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics – The Finite Volume Method, 2nd ed.; Pearson: New York, 2007.
  • Chandra, V.; Das, S.; Peters, E. A. J. F.; Kuipers, J. A. M. Direct Numerical Simulation of Hydrodynamic Dispersion in Open-Cell Solid Foams. Chem. Eng. J. 2019, 358, 1305–1323. DOI: 10.1016/j.cej.2018.10.017.
  • Shaeri, M. R.; Beyhaghi, S.; Pillai, K. M. Drying of a Porous Mediu, with Multiple Open Sides Using a Pore-Network Model Simulation. Int. Commun. Heat Mass Transfer 2012, 39, 1320–1324. DOI: 10.1016/j.icheatmasstransfer.2012.07.022.
  • Shaeri, M. R. Investigating Regular Pore-Network Models to Predict Drying in Porous. Master’s thesis, University of Wisconsin, Milwaukee, 2012.
  • Zhou, D.; Blunt, M.; Orr, F. M. J. Hydrocarbon Drainage along Corners of Noncircular Capillaries. J. Colloid Interface Sci. 1997, 187, 11–21. DOI: 10.1006/jcis.1996.4699.
  • Chauvet, F.; Duru, P.; Geoffroy, S.; Prat, M. Three Periods of Drying of a Single Square Capillary Tube. Phys. Rev. Lett. 2009, 103, 124502. DOI: 10.1103/PhysRevLett.103.124502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.