Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 10
592
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer enhancement in rotary drum dryer by incorporating jet impingement to accelerate drying rate

, ORCID Icon, , , &
Pages 1314-1324 | Received 14 Nov 2019, Accepted 10 Mar 2020, Published online: 20 Mar 2020

References

  • Arruda, E. B.; Façanha, J. M. F.; Pires, L. N.; Assis, A. J.; Barrozo, M. A. S. Conventional and Modified Rotary Dryer: Comparison of Performance in Fertilizer Drying. Chem. Eng. Process. Process Intensif. 2009, 48, 1414–1418. DOI: 10.1016/j.cep.2009.07.007.
  • Silvério, B. C.; Arruda, E. B.; Duarte, C. R.; Barrozo, M. A. S. A Novel Rotary Dryer for Drying Fertilizer: Comparison of Performance with Conventional Configurations. Powder Technol. 2015, 270, 135–140. DOI: 10.1016/j.powtec.2014.10.030.
  • Nafsun, A. I.; Herz, F. Experiments on the Temperature Distribution in the Solid Bed of Rotary Drums. Appl. Therm. Eng. 2016, 103, 1039–1047. DOI: 10.1016/j.applthermaleng.2016.04.128.
  • Law, C. L.; Chen, H. H. H.; Mujumdar, A. S. Food Technologies: Drying. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press, Elsevier: Waltham, 2014; Vol. 3, pp 156–167. DOI: 10.1016/B978-0-12-378612-8.00268-7.
  • Yi, J.; Li, X.; He, J.; Duan, X. Drying Efficiency and Product Quality of Biomass Drying: A Review. Dry. Technol. 2019, 1–16. DOI: 10.1080/07373937.2019.1628772.
  • Trojosky, M. Rotary Drums for Efficient Drying and Cooling. Dry. Technol. 2019, 37, 632–651. DOI: 10.1080/07373937.2018.1552597.
  • Tarhan, S.; Telci, İ.; Tuncay, M. T.; Polatci, H. Product Quality and Energy Consumption When Drying Peppermint by Rotary Drum Dryer. Ind. Crops Prod. 2010, 32, 420–427. DOI: 10.1016/j.indcrop.2010.06.003.
  • Silva, P. B.; Duarte, C. R.; Barrozo, M. A. S. A Novel System for Drying of Agro-Industrial Acerola (Malpighia emarginata D. C.) Waste for Use as Bioactive Compound Source. Innov. Food Sci. Emerg. Technol. 2019, 52, 350–357. DOI: 10.1016/j.ifset.2019.01.018.
  • Le Guen, L.; Huchet, F.; Dumoulin, J.; Baudru, Y.; Tamagny, P. Convective Heat Transfer Analysis in Aggregates Rotary Drum Reactor. Appl. Therm. Eng. 2013, 54, 131–139. DOI: 10.1016/j.applthermaleng.2013.01.025.
  • Gu, C.; Zhang, X.; Li, B.; Yuan, Z. Study on Heat and Mass Transfer of Flexible Filamentous Particles in a Rotary Dryer. Powder Technol. 2014, 267, 234–239. DOI: 10.1016/j.powtec.2014.06.059.
  • Geng, F.; Li, Y.; Yuan, L.; Liu, M.; Wang, X.; Yuan, Z.; Yan, Y.; Luo, D. Experimental Study on the Space Time of Flexible Filamentous Particles in a Rotary Dryer. Exp. Therm. Fluid Sci. 2013, 44, 708–715. DOI: 10.1016/j.expthermflusci.2012.09.011.
  • Xie, Q.; Chen, Z.; Mao, Y.; Chen, G.; Shen, W. Case Studies of Heat Conduction in Rotary Drums with L-Shaped Lifters via DEM. Case Stud. Therm. Eng. 2018, 11, 145–152. DOI: 10.1016/j.csite.2018.02.001.
  • Marinos-Kouris, D.; Krokida, M.; Mujumdar, A. Rotary Drying. In Handbook of Industrial Drying, 3rd ed.; CRC Press: Boca Raton, FL, 2006; pp 151–171. DOI: 10.1201/9781420017618.ch7.
  • Santos, D. A.; Duarte, C. R.; Barrozo, M. A. S. Segregation Phenomenon in a Rotary Drum: Experimental Study and CFD Simulation. Powder Technol. 2016, 294, 1–10. DOI: 10.1016/j.powtec.2016.02.015.
  • Debacq, M.; Thammavong, P.; Vitu, S.; Ablitzer, D.; Houzelot, J.-L.; Patisson, F. A Hydrodynamic Model for Flighted Rotary Kilns Used for the Conversion of Cohesive Uranium Powders. Chem. Eng. Sci. 2013, 104, 586–595. DOI: 10.1016/j.ces.2013.09.037.
  • Colin, B.; Dirion, J.-L.; Arlabosse, P.; Salvador, S. Wood Chips Flow in a Rotary Kiln: Experiments and Modeling. Chem. Eng. Res. Des. 2015, 98, 179–187. DOI: 10.1016/j.cherd.2015.04.017.
  • Bongo Njeng, A. S.; Vitu, S.; Clausse, M.; Dirion, J.-L.; Debacq, M. Wall-to-Solid Heat Transfer Coefficient in Flighted Rotary Kilns: Experimental Determination and Modeling. Exp. Therm. Fluid Sci. 2018, 91, 197–213. DOI: 10.1016/j.expthermflusci.2017.10.024.
  • Kaensup, W.; Chutima, S.; Wongwises, S. Experimental Study on Drying of Chilli in a Combined Microwave-Vacuum-Rotary Drum Dryer. Dry. Technol. 2002, 20, 2067–2079. DOI: 10.1081/DRT-120015585.
  • Inoue, S.; Eguchi, K.; Imamoto, T.; KlSHI, M. Impinging Jet Dryer. Dry. Technol. 1992, 10, 679–714. DOI: 10.1080/07373939208916471.
  • Seyed-Yagoobi, J. Enhancement of Heat and Mass Transfer with Innovative Impinging Jets. Dry. Technol. 1996, 14, 1173–1196. DOI: 10.1080/07373939608917143.
  • Stenström, S. Drying of Paper: A Review 2000–2018. Dry. Technol. 2019, 1–21. DOI: 10.1080/07373937.2019.1596949.
  • Jambunathan, K.; Lai, E.; Moss, M. A.; Button, B. L. A Review of Heat Transfer Data for Single Circular Jet Impingement. Int. J. Heat Fluid Flow 1992, 13, 106–115. DOI: 10.1016/0142-727X(92)90017-4.
  • Wae-Hayee, M.; Tekasakul, P.; Nuntadusit, C. Influence of Nozzle Arrangement on Flow and Heat Transfer Characteristics of Arrays of Circular Impinging Jets. Songklanakarin J. Sci. Technol. 2013, 35, 203–212.
  • Bai, G.-P.; Gong, G.-C.; Zhao, F.-Y.; Lin, Z.-X. Multiple Thermal and Moisture Removals from the Moving Plate Opposite to the Impinging Slot Jet. Appl. Therm. Eng. 2014, 66, 252–265. DOI: 10.1016/j.applthermaleng.2014.02.018.
  • Whelan, B. P.; Robinson, A. J. Nozzle Geometry Effects in Liquid Jet Array Impingement. Appl. Therm. Eng. 2009, 29, 2211–2221. DOI: 10.1016/j.applthermaleng.2008.11.003.
  • Sarkar, A.; Nitin, N.; Karwe, M. V.; Singh, R. P. Fluid Flow and Heat Transfer in Air Jet Impingement in Food Processing. J. Food Sci. 2004, 69, CRH113–CRH122. DOI: 10.1111/j.1365-2621.2004.tb06315.x.
  • Wae-Hayee, M.; Yeranee, K.; Piya, I.; Rao, Y.; Nuntadusit, C. Heat Transfer Correlation of Impinging Jet Array from Pipe Nozzle under Fully Developed Flow. Appl. Therm. Eng. 2019, 154, 37–45. DOI: 10.1016/j.applthermaleng.2019.03.044.
  • Guo, Q.; Wen, Z.; Dou, R. Experimental and Numerical Study on the Transient Heat-Transfer Characteristics of Circular Air-Jet Impingement on a Flat Plate. Int. J. Heat Mass Transf. 2017, 104, 1177–1188. DOI: 10.1016/j.ijheatmasstransfer.2016.09.048.
  • Zuckerman, N.; Lior, N. Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling. Adv. Heat Transf., 2006, 39, 565–631. DOI: 10.1016/S0065-2717(06)39006-5.
  • Geers, L. F. G.; Tummers, M. J.; Bueninck, T. J.; Hanjalić, K. Heat Transfer Correlation for Hexagonal and in-Line Arrays of Impinging Jets. Int. J. Heat Mass Transf. 2008, 51, 5389–5399. DOI: 10.1016/j.ijheatmasstransfer.2008.01.035.
  • Banooni, S.; Hosseinalipour, S. M.; Mujumdar, A. S.; Taheran, E.; Mashaiekhi, M. Impingement Heat Transfer Effects on Baking of Flat Bread. Dry. Technol. 2008, 26, 910–919. DOI: 10.1080/07373930802142564.
  • Kaleemullah, S.; Kailappan, R. Geometric and Morphometric Properties of Chillies. Int. J. Food Prop. 2003, 6, 481–498. DOI: 10.1081/JFP-120021454.
  • Keawsuntia, Y. Experimental Investigation of Active Solar Dryer for Drying of Chili. Adv. Mater. Res. 2014, 953–954, 16–19. DOI: 10.4028/www.scientific.net/AMR.953-954.16.
  • Tavakolipour, H.; Mokhtarian, M. Drying of Chili Pepper in Different Conditions. In Proceedings of TheIRES 4th International Conference; Kuala Lumpur, Malaysia, 2015; pp 71–74.
  • Kaleemullah, S.; Kailappan, R. Drying Kinetics of Red Chillies in a Rotary Dryer. Biosyst. Eng. 2005, 92, 15–23. DOI: 10.1016/j.biosystemseng.2005.05.015.
  • National Bureau of Agricultural Commodity and Food Standards. Dried Chili Peppers. In Thai Agricultural Standard TAS 3001-2010; Bangkok, Thailand, 2010.
  • Fudholi, A.; Sopian, K.; Yazdi, M. H.; Ruslan, M. H.; Gabbasa, M.; Kazem, H. A. Performance Analysis of Solar Drying System for Red Chili. Sol. Energy 2014, 99, 47–54. DOI: 10.1016/j.solener.2013.10.019.
  • Islam, M.; Islam, M. I.; Tusar, M.; Limon, A. H. Effect of Cover Design on Moisture Removal Rate of a Cabinet Type Solar Dryer for Food Drying Application. Energy Proc. 2019, 160, 769–776. DOI: 10.1016/j.egypro.2019.02.181.
  • Chokphoemphun, S.; Chokphoemphun, S. Moisture Content Prediction of Paddy Drying in a Fluidized-Bed Drier with a Vortex Flow Generator Using an Artificial Neural Network. Appl. Therm. Eng. 2018, 145, 630–636. DOI: 10.1016/j.applthermaleng.2018.09.087.
  • Moffat, R. J. Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. DOI: 10.1016/0894-1777(88)90043-X.
  • El-Sebaii, A. A.; Aboul-Enein, S.; Ramadan, M. R. I.; Shalaby, S. M.; Moharram, B. M. Thermal Performance Investigation of Double Pass-Finned Plate Solar Air Heater. Appl. Energy 2011, 88, 1727–1739. DOI: 10.1016/j.apenergy.2010.11.017.
  • Fudholi, A.; Othman, M. Y.; Ruslan, M. H.; Sopian, K. Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying. Int. J. Photoenergy 2013, 2013, 1–9. DOI: 10.1155/2013/167895.
  • Earle, R. L. Drying. In Unit Operations in Food Processing; Second Edition; Earle, R. L., Ed.; Pergamon, Elsevier, 1983; pp 85–104. DOI: 10.1016/B978-0-08-025536-1.50011-4.
  • Banout, J.; Ehl, P.; Havlik, J.; Lojka, B.; Polesny, Z.; Verner, V. Design and Performance Evaluation of a Double-Pass Solar Drier for Drying of Red Chilli (Capsicum annuum L.). Sol. Energy 2011, 85, 506–515. DOI: 10.1016/j.solener.2010.12.017.
  • Kadiyala, P. K.; Chattopadhyay, H. Numerical Simulation of Transport Phenomena Due to Array of Round Jets Impinging on Hot Moving Surface. Dry. Technol. 2017, 35, 1742–1754. DOI: 10.1080/07373937.2016.1275672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.