Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 10
296
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Effect of sample rugged surface on energy consumption and quality of plant-based food materials in convective drying

, , &
Pages 1339-1348 | Received 31 Jul 2019, Accepted 18 Mar 2020, Published online: 08 Apr 2020

References

  • Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste. FAO: Rome, 2011.
  • Joardder, M. U. H.; Kumar, C.; Brown, R. J.; Karim, M. A. A Micro-Level Investigation of the Solid Displacement Method for Porosity Determination of Dried Food. J. Food Eng. 2015, 166, 156–164. DOI: 10.1016/j.jfoodeng.2015.05.034.
  • Karim, M. A.; Hawlader, M. N. A. Mathematical Modelling and Experimental Investigation of Tropical Fruits Drying. Int. J. Heat Mass Transfer 2005, 48, 4914–4925. DOI: 10.1016/j.ijheatmasstransfer.2005.04.035.
  • Kumar, C.; Joardder, M. U. H.; Farrell, T. W.; Karim, M. A. Investigation of Intermittent Microwave Convective Drying (IMCD) of Food Materials by a Coupled 3D Electromagnetics and Multiphase Model. Dry. Technol. 2018, 36, 736–750. DOI: 10.1080/07373937.2017.1354874.
  • Chua, K. J.; Mujumdar, A. S.; Hawlader, M. N. A.; Chou, S. K.; Ho, J. C. Convective Drying of Agricultural Products. Effect of Continuous and Stepwise Change in Drying Air Temperature. Dry. Technol. 2001, 19, 1949–1960. DOI: 10.1081/DRT-100107282.
  • Defraeye, T. Impact of Size and Shape of Fresh-Cut Fruit on the Drying Time and Fruit Quality. J. Food Eng. 2017, 210, 35–41. DOI: 10.1016/j.jfoodeng.2017.04.004.
  • Telis, V. R. N.; Telis-Romero, J.; Gabas, A. L. Solids Rheology for Dehydrated Food and Biological Materials. Dry. Technol. 2005, 23, 759–780. DOI: 10.1081/DRT-200054190.
  • Khaing Hnin, K.; Zhang, M.; Mujumdar, A. S.; Zhu, Y., Emerging food drying technologies with energysaving characteristics: A review. Drying Technology 2019, 37, 1465–1480.
  • Strumillo, C.; Adamiec, J. Energy and Quality Aspects of Food Drying. Dry. Technol. 1996, 14, 423–448. DOI: 10.1080/07373939608917106.
  • Mahiuddin, M.; Khan, M. I. H.; Pham, N. D.; Karim, M. A. Development of Fractional Viscoelastic Model for Characterizing Viscoelastic Properties of Food Material during Drying. Food Biosci. 2018, 23, 45–53. DOI: 10.1016/j.fbio.2018.03.002.
  • Masud, M. H.; Joardder, M. U. H.; Karim, M. A. Effect of Hysteresis Phenomena of Cellular Plant-Based Food Materials on Convection Drying Kinetics. Dry. Technol. 2019, 37, 1313–1320. DOI: 10.1080/07373937.2018.1498508.
  • Gumeta-Chávez, C.; Chanona-Pérez, J. J.; Mendoza-Pérez, J. A.; Terres-Rojas, E.; Garibay-Febles, V.; Gutiérrez-López, G. F. Shrinkage and Deformation of Agave Atrovirens Karw Tissue during Convective Drying: Influence of Structural Arrangements. Dry. Technol. 2011, 29, 612–623. DOI: 10.1080/07373937.2010.514380.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Transfer Model for Intermittent Microwave-Convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiph. Flow 2017, 95, 101–119. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Khan, M. I. H.; Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Porous Media Modelling: A Novel Approach to Predicting Food Processing Performance. Crit. Rev. Food Sci. Nutr. 2018, 58, 528–546. DOI: 10.1080/10408398.2016.1197881.
  • Tsuruta, T.; Tanigawa, H.; Sashi, H. Study on Shrinkage Deformation of Food in Microwave–Vacuum Drying. Dry. Technol. 2015, 33, 1830–1836. DOI: 10.1080/07373937.2015.1036286.
  • Jan Kowalski, S. Mathematical modelling of shrinkage during drying. Drying Technology 1996, 14, 307–331.
  • Joardder, M. U.; Masud, M.; Azharul, M., Relationship between intermittency of drying, microstructural changes, and food quality. Intermittent and nonstationary drying technologies: Principles and applications Intermittent Nonstationary Dry. Technol. Princ. Appl. 2017, 123, 123–137.
  • Joardder, M. U.; Mourshed, M.; Masud, M. H., State of Bound Water: Measurement and Significance in Food Processing. Springer Nature, Switzerland AG: 2019.
  • Rathnayaka, C. M.; Karunasena, H. C. P.; Senadeera, W.; Gu, Y. T. Application of 3D Imaging and Analysis Techniques for the Study of Food Plant Cellular Deformations during Drying. Dry. Technol. 2018, 36, 509–522. DOI: 10.1080/07373937.2017.1341417.
  • Aral, S.; Beşe, A. V. Convective Drying of Hawthorn Fruit (Crataegus spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration Capacity. Food Chem. 2016, 210, 577–584. DOI: 10.1016/j.foodchem.2016.04.128.
  • Joardder, M. U.; Karim, M., Development of a porosity prediction model based on shrinkage velocity and glass transition temperature. Drying Technology. 2019, 37, 1988–2004
  • Pan, Y. K.; Zhao, L. J.; Hu, W. B. The Effect of Tempering-Intermittent Drying on Quality and Energy of Plant Materials. Dry. Technol. 1998, 17, 1795–1812. DOI: 10.1080/07373939908917653.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Food Structure: Its Formation and Relationships with Other Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1190–1205. DOI: 10.1080/10408398.2014.971354.
  • Phungamngoen, C.; Chiewchan, N.; Devahastin, S. Effects of Food Topographical Features on Attachment and Heat Resistance of Salmonella during Drying. Dry. Technol. 2011, 29, 1378–1385. DOI: 10.1080/07373937.2011.585261.
  • Joardder, M. U. H.; Karim, A.; Kumar, C.; Brown, R. J. Determination of Effective Moisture Diffusivity of Banana Using Thermogravimetric Analysis. Procedia Eng. 2014, 90, 538–543. DOI: 10.1016/j.proeng.2014.11.769.
  • Crank, J. The mathematics of diffusion. Oxford university press: 1979.
  • Karim, M. A.; Hawlader, M. N. A. Drying Characteristics of Banana: theoretical Modelling and Experimental Validation. J. Food Eng. 2005, 70, 35–45. DOI: 10.1016/j.jfoodeng.2004.09.010.
  • Vega-Gálvez, A.; Miranda, M.; Díaz, L. P.; Lopez, L.; Rodriguez, K.; Scala, K. D. Effective Moisture Diffusivity Determination and Mathematical Modelling of the Drying Curves of the Olive-Waste Cake. Bioresour. Technol. 2010, 101, 7265–7270. DOI: 10.1016/j.biortech.2010.04.040.
  • Mohammadi, A.; Rafiee, S.; Emam-Djomeh, Z.; Keyhani, A. Kinetic Models for Colour Changes in Kiwifruit Slices during Hot Air Drying. World J. Agric. Sci. 2008, 4, 376–383.
  • Joardder, M. U. H.; Karim, A.; Kumar, C. Effect of Temperature Distribution on Predicting Quality of Microwave Dehydrated Food. J. Mech. Eng. Sci. 2013, 5, 562–568. DOI: 10.15282/jmes.5.2013.2.0053.
  • Motevali, A.; Minaei, S.; Khoshtagaza, M. H. Evaluation of Energy Consumption in Different Drying Methods. Energy Convers. Manag. 2011, 52, 1192–1199. DOI: 10.1016/j.enconman.2010.09.014.
  • Khan, M. I. H.; Karim, M. A. Cellular Water Distribution, Transport, and Its Investigation Methods for Plant-Based Food Material. Food Res. Int. 2017, 99, 1–14. DOI: 10.1016/j.foodres.2017.06.037.
  • Senadeera, W.; Bhandari, B. R.; Young, G.; Wijesinghe, B. Influence of Shapes of Selected Vegetable Materials on Drying Kinetics during Fluidized Bed Drying. J. Food Eng. 2003, 58, 277–283. DOI: 10.1016/S0260-8774(02)00386-2.
  • Sjöholm, I.; Gekas, V. Apple Shrinkage upon Drying. J. Food Eng. 1995, 25, 123–130. DOI: 10.1016/0260-8774(94)00001-P.
  • Mulet, A.; Garcia-Reverter, J.; Bon, J.; Berna, A. Effect of Shape on Potato and Cauliflower Shrinkage during Drying. Dry. Technol. 2000, 18, 1201–1219. DOI: 10.1080/07373930008917772.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Experimental Investigation of Bound and Free Water Transport Process during Drying of Hygroscopic Food Material. Int. J. Therm. Sci. 2017, 117, 266–273. DOI: 10.1016/j.ijthermalsci.2017.04.006.
  • Rahman, M. M.; Joardder, M. U. H.; Karim, A. Non-Destructive Investigation of Cellular Level Moisture Distribution and Morphological Changes during Drying of a Plant-Based Food Material. Biosyst. Eng. 2018, 169, 126–138. DOI: 10.1016/j.biosystemseng.2018.02.007.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials during Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf 2018, 17, 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Rahman, M. M.; Joardder, M. U. H.; Khan, M. I. H.; Pham, N. D.; Karim, M. A. Multi-Scale Model of Food Drying: Current Status and Challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 858–876. DOI: 10.1080/10408398.2016.1227299.
  • Khan, M. I. H.; Nagy, S. A.; Karim, M. A. Transport of Cellular Water during Drying: An Understanding of Cell Rupturing Mechanism in Apple Tissue. Food Res. Int. 2018, 105, 772–781. DOI: 10.1016/j.foodres.2017.12.010.
  • Kumar, C.; Joardder, M. U. H.; Karim, A.; Millar, G. J.; Amin, Z. M. Temperature Redistribution Modelling during Intermittent Microwave Convective Heating. Procedia Eng. 2014, 90, 544–549. DOI: 10.1016/j.proeng.2014.11.770.
  • Nwakuba, N. R.; Asoegwu, S.; Nwaigwe, K. Energy requirements for drying of sliced agricultural products: a review. Agricultural Engineering International: CIGR Journal 2016, 18, 144–155.
  • Cengel, Y. A.; Ghajar, A., Heat and Mass Transfer, 5-th edition. Tata McGraw Hill Education Private Limited, USA: 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.