Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 10
1,553
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical model of water removal and air penetration during vacuum dewatering

, ORCID Icon, &
Pages 1349-1358 | Received 22 Aug 2019, Accepted 18 Mar 2020, Published online: 02 Apr 2020

References

  • Kerekes, R. J.; Mcdonald, J. D. A Decreasing Permeability Model of Wet Pressing: theory. Tappi J. 1991, 74, 150–156.
  • Mcdonald, J. D.; Kerekes, R. J. A Decreasing-Permeability Model of Wet Pressing with Rewetting. Tappi J. 1995, 78, 107–111.
  • Mcdonald, J. D.; Hamel, J.; Kerekes, R. J. Design Equation for Paper Machine Press Sections. J. Pulp Pap. Sci. 2000, 26, 401–406.
  • Kerekes, R. J.; McDonald, E. M.; McDonald, J. D. Decreasing Permeability Model of Wet Pressing: Extension to Equilibrium Conditions. J For. 2013, 3, 46–51.
  • Mcdonald, J. D.; Kerekes, R. J. Estimating Limits of Wet Pressing on Paper Machines. TJ. 2017, 16, 81–87. DOI: 10.32964/TJ16.2.81.
  • Bousfield, D.; Paradis, M.; Johnson, D.; Bilodeau, M. Table Drainage and Press Dewatering When Cellulose Nanofibers Are Applied on the Wet End. PaperCon. 2017, 2, 681–688.
  • Rezk, K.; Nilsson, L.; Forsberg, J.; Berghel, J. Modelling of Water Removal during a Paper Vacuum Dewatering Process Using a Level-Set Method. Chem. Eng. Sci. 2013, 101, 543–553. DOI: 10.1016/j.ces.2013.07.005.
  • Rezk, K.; Nilsson, L.; Forsberg, J.; Berghel, J. Simulation of Water Removal in Paper Based on a 2D Level-Set Model Coupled with Volume Forces Representing Fluid Resistance in 3D Fiber Distribution. Dry. Technol. 2015, 33, 605–615. DOI: 10.1080/07373937.2014.967401.
  • Korhonen, M.; Puisto, A.; Alava, M.; Maloney, T. The Effect of Pressure Pulsing on the Mechanical Dewatering of Nanofiber Suspensions. Chem. Eng. Sci. 2020, 212, 115267. DOI: 10.1016/j.ces.2019.115267.
  • Stenström, S.; Nilsson, L. Predicting Water Removal during Vacuum Dewatering from Fundamental Fibre Property Data. Nord. Pulp Pap. Res. J. 2015, 30, 265–271. DOI: 10.3183/npprj-2015-30-02-p265-271.
  • Sjöstrand, B.; Barbier, C.; Nilsson, L. Modeling the Influence of Forming Fabric Structure on Vacuum Box Dewatering. TJ. 2017, 16, 477–483. DOI: 10.32964/TJ16.8.477.
  • Ergun, S. Fluid Flow through Packed Column. Chem. Eng. Prog. 1952, 48, 89–94.
  • Åslund, P.; Vomhoff, H.; Waljanson, A. The Deformation of Chemical and Mechanical Pulp Webs during Suction Box Dewatering. Nord. Pulp Pap. Res. J. 2008, 23, 403–408. DOI: 10.3183/npprj-2008-23-04-p403-408.
  • Paulapuro, H. Wet Pressing. In Papermaking Part 1: Stock Preparation and Wet End. Paulapuro, H.; Gullichsen, J., Eds. Fapet Oy: Jyväskylä, 2000, pp. 284–340.
  • Vomhoff, H. Dynamic Compressibility of Water- Saturated Fibre Networks and Influence of Local Stress Variations in Wet Pressing. Ph.D. Dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden, 1998.
  • Attwood, B. W. A Study of Vacuum Box Operation. Pap. Technol 1962, 3, 144–153.
  • Neun, J. A. Performance of High Vacuum Dewatering Elements in the Forming Section. Tappi J. 1994, 77, 133–138.
  • Räisänen, K. O.; Karrila, S.; Maijala, A. Vacuum Dewatering Optimization with Different Furnishes. Pap. Ja Puu. 1996, 78, 461–467.
  • Baldwin, L. High Vacuum Dewatering. Pap. Technol. 1997, 38, 23–28.
  • Ramaswamy, S. Vacuum Dewatering during Paper Manufacturing. Dry. Technol. 2003, 21, 685–717. DOI: 10.1081/DRT-120019058.
  • Åslund, P.; Vomhoff, H. Dewatering Mechanisms and Their Influence on Suction Box Dewatering Processes – A Literature Review. Nord. Pulp Pap. Res. J. 2008, 23, 389–397. DOI: 10.3183/npprj-2008-23-04-p389-397.
  • Wahlström, B. Wet Pressing in the 20th Century: Evolution, Understanding and Future. Pulp Pap. Canada. 2001, 102, 81–88.
  • Nilsson, L. Air Flow and Compression Work in Vacuum Dewatering of Paper. Dry. Technol. 2014, 32, 39–46. DOI: 10.1080/07373937.2013.809732.
  • Sjöstrand, B.; Barbier, C.; Nilsson, L. Influence on Sheet Dewatering by Structural Differences in Forming Fabrics. PaperCon. 2016, 2, 767–776.
  • Sjöstrand, B.; Barbier, C.; Ullsten, H.; Nilsson, L. Dewatering of Softwood Kraft Pulp with Additives of Microfibrillated Cellulose and Dialcohol Cellulose. BioRes 2019, 14, 6370–6383.
  • Pujara, J.; Siddiqui, M. A.; Liu, Z.; Bjegovic, P.; Takagaki, S. S.; Li, P. Y.; Ramaswamy, S. Method to Characterize the Air Flow and Water Removal Characteristics during Vacuum Dewatering. Part II—Analysis and Characterization. Dry. Technol. 2008, 26, 341–348. DOI: 10.1080/07373930801898125.
  • Åslund, P.; Vomhoff, H.; Waljanson, A. External Rewetting after Suction Box Dewatering. Nord. Pulp Pap. Res. J. 2008, 23, 409–414. DOI: 10.3183/npprj-2008-23-04-p409-414.
  • Kullander, J.; Nilsson, L.; Barbier, C. Evaluation of Furnishes for Tissue Manufacturing ; Suction Box Dewatering and Paper Testing. Nord. Pulp Pap. Res. J. 2012, 27, 143–150. DOI: 10.3183/npprj-2012-27-01-p143-150.
  • Granevald, R.; Nilsson, L. S.; Stenström, S. Impact of Different Forming Fabric Parameters on Sheet Solids Content during Vacuum Dewatering. Nord. Pulp Pap. Res. J. 2004, 19, 428–433. DOI: 10.3183/npprj-2004-19-04-p428-433.
  • Sjöstrand, B.; Barbier, C.; Nilsson, L. Rewetting after High Vacuum Suction Boxes in a Pilot Paper Machine. Nord. Pulp Pap. Res. J. 2015, 30, 667–672. DOI: 10.3183/npprj-2015-30-04-p667-672.
  • Pettersson, P.; Lundström, T. S.; Wikström, T. A Method to Measure the Permeability of Dry Fiber Mats. Wood Fiber Sci. 2006, 38, 417–426.