2,230
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Production and characterization of infant milk formula powders: A review

, , , ORCID Icon &
Pages 1492-1512 | Received 31 Jan 2020, Accepted 07 May 2020, Published online: 20 May 2020

References

  • Mordor Intelligence Report. Infant Nutrition Market-Growth, Trends, and Forecast. Report, 2018. https://www.mordorintelligence.com/industry-reports/infant-nutrition-market (accessed Jan 15, 2020).
  • Global Industry Analysts, Inc. Report. Baby Foods and Infant Formula - Market Analysis, Trends and Forecasts. Report, 2018. https://www.strategyr.com/market-report-baby-foods-and-infant-formula-forecasts-global-industry-analysts-inc.asp (accessed Jan 15, 2020).
  • European Commission. Commission Directive 2006/141/EC of 26 December 2006 on Infant Formulae and Follow-on Formulae; European Commission: Brussels, Belgium, 2006.
  • Codex Alimentarius. Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants; Codex Alimentarius: Standard 72. Wolters Kluwer: Netherlands, 2007.
  • Koletzko, B.; Baker, S.; Cleghorn, G.; Neto, U. F.; Gopalan, S.; Hernell, O.; Hock, Q. S.; Jirapinyo, P.; Lonnerdal, B.; Pencharz, P.; et al. Global Standard for the Composition of Infant Formula: Recommendations of an ESPGHAN Coordinated International Expert Group. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 584–599. DOI: 10.1097/01.mpg.0000187817.38836.42.
  • Koletzko, B.; Baker, S.; Cleghorn, G.; Neto, U. F.; Gopalan, S.; Hernell, O.; Hock, Q. S.; Jirapinyo, P.; Lonnerdal, B.; Pencharz, P.; et al. Global Standard for the Composition of Infant Formula: Recommendations of an ESPGHAN Coordinated International Expert Group. Jpn. Pharmacol. Ther. 2010, 38, 689–710.
  • Montagne, D. H.; Van Dael, P.; Skanderby, M.; Hugelshofer, W. Infant Formulae - Powders and Liquids. In Dairy Powders and Concentrated Products, 1st ed.; Tamime, A. Y., Ed.; Wiley-Blackwell: West Sussex, UK, 2009; pp 294–331.
  • Nasirpour, A.; Scher, J.; Desobry, S. Baby Foods: Formulations and Interactions (A Review). Crit. Rev. Food Sci. Nutr. 2006, 46, 665–681. DOI: 10.1080/10408390500511896.
  • Thompkinson, D. K.; Kharb, S. Aspects of Infant Food Formulation. Comp. Rev. Food Sci. Food Safety 2007, 6, 79–102. DOI: 10.1111/j.1541-4337.2007.00020.x.
  • Bar-Yoseph, F.; Lifshitz, Y.; Cohen, T. Review of sn-2 Palmitate Oil Implications for Infant Health. Prostaglandins Leukot. Essent. Fatty Acids 2013, 89, 139–143. DOI: 10.1016/j.plefa.2013.03.002.
  • Guo, M. Chemical Composition of Human Milk. In Human Milk Biochemistry and Infant Formula Manufacturing Technolog, 1st ed.; Guo, M., Ed.; Woodhead: Cambridge, UK, 2014; pp 19–32.
  • Masum, A. K. M.; Chandrapala, J.; Adhikari, B.; Huppertz, T.; Zisu, B. Effect of Lactose-to-Maltodextrin Ratio on Emulsion Stability and Physicochemical Properties of Spray-Dried Infant Milk Formula Powders. J. Food Eng. 2019, 254, 34–41. DOI: 10.1016/j.jfoodeng.2019.02.023.
  • Lee, L. Y.; Bharani, R.; Biswas, A.; Lee, J.; Tran, L.; Pecquet, S.; Steenhout, P. Normal Growth of Infants Receiving an Infant Formula Containing Lactobacillus reuteri, Galacto-Oligosaccharides, and Fructo-Oligosaccharide: A Randomized Controlled Trial. Matern. Health Neonatol. Perinatol. 2015, 1, 9. DOI: 10.1186/s40748-015-0008-3.
  • Nijman, R.; Liu, Y.; Bunyatratchata, A.; Smilowitz, J.; Stahl, B.; Barile, D. Characterization and Quantification of Oligosaccharides in Human Milk and Infant Formula. J. Agric. Food Chem. 2018, 66, 6851–6859. DOI: 10.1021/acs.jafc.8b01515.
  • Lonnerdal, B. Nutritional and Physiologic Significance of Human Milk Proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S.
  • Fomon, S. J. Infant Feeding in the 20th Century: Formula and Beikost. J. Nutr. 2001, 131, 409S–420S. DOI: 10.1093/jn/131.2.409S.
  • Masum, A. K. M.; Huppertz, T.; Chandrapala, J.; Adhikari, B.; Zisu, B. Physicochemical Properties of Spray Dried Model Infant Milk Formula Powders: Influence of Whey Protein-to-Casein Ratio. Int. Dairy J. 2020, 100, 104565. DOI: 10.1016/j.idairyj.2019.104565.
  • Drapala, K. P.; Auty, M. A.; Mulvihill, D. M.; O’Mahony, J. A. Influence of Emulsifier Type on the Spray-Drying Properties of Model Infant Formula Emulsions. Food Hydrocoll. 2017, 69, 56–66. DOI: 10.1016/j.foodhyd.2016.12.024.
  • Drapala, K. P.; Auty, M. A.; Mulvihill, D. M.; O’Mahony, J. A. Performance of Whey Protein Hydrolysate–Maltodextrin Conjugates as Emulsifiers in Model Infant Formula Emulsions. Int. Dairy J. 2016, 62, 76–83. DOI: 10.1016/j.Idairyj.2016.03.006.
  • Drapala, K. P.; Auty, M. A.; Mulvihill, D. M.; O'Mahony, J. A. Improving Thermal Stability of Hydrolysed Whey Protein-Based Infant Formula Emulsions by Protein–Carbohydrate Conjugation. Food Res. Int. 2016, 88, 42–51. DOI: 10.1016/j.foodres.2016.01.028.
  • Kelly, G. M.; O'Mahony, J. A.; Kelly, A. L.; O'Callaghan, D. J. Effect of Hydrolyzed Whey Protein on Surface Morphology, Water Sorption, and Glass Transition Temperature of a Model Infant Formula. J. Dairy Sci. 2016, 99, 6961–6972. DOI: 10.3168/jds.2015-10447.
  • Murphy, E. G.; Roos, Y. H.; Hogan, S. A.; Maher, P. G.; Flynn, C. G.; Fenelon, M. A. Physical Stability of Infant Milk Formula Made with Selectively Hydrolysed Whey Proteins. Int. Dairy J. 2015, 40, 39–46. DOI: 10.1016/j.idairyj.2014.08.012.
  • Toikkanen, O.; Outinen, M.; Malafronte, L.; Rojas, O. Formation and Structure of Insoluble Particles in Reconstituted Model Infant Formula Powders. Int. Dairy J. 2018, 82, 19–27. DOI: 10.1016/j.idairyj.2018.03.001.
  • Nowak-Węgrzyn, A.; Czerkies, L. A.; Collins, B.; Saavedra, J. M. Evaluation of Hypoallergenicity of a New, Amino Acid-Based Formula. Clin. Pediatr. (Phila) 2015, 54, 264–272. DOI: 10.1177/0009922814557785.
  • McCarthy, N. A.; Kelly, A. L.; O’Mahony, J. A.; Hickey, D. K.; Chaurin, V.; Fenelon, M. A. Effect of Protein Content on Emulsion Stability of a Model Infant Formula. Int. Dairy J. 2012, 25, 80–86. DOI: 10.1016/j.idairyj.2012.03.003.
  • Berger, A.; Fleith, M.; Crozier, G. Nutritional Implications of Replacing Bovine Milk Fat with Vegetable Oil in Infant Formulas. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 115–130. DOI: 10.1097/00005176-200002000-00006.
  • Jensen, R. G. The Lipids in Human Milk. Prog. Lipid Res. 1996, 35, 53–92. DOI: 10.1016/0163-7827(95)00010-0.
  • Nagachinta, S.; Akoh, C. Synthesis of Structured Lipid Enriched with Omega Fatty Acids and sn-2 Palmitic Acid by Enzymatic Esterification and Its Incorporation in Powdered Infant Formula. J. Agric. Food Chem. 2013, 61, 4455–4463. DOI: 10.1021/jf400634w.
  • Hageman, J. H. J.; Danielsen, M.; Nieuwenhuizen, A. G.; Feitsma, A. L.; Dalsgaard, T. Comparison of Bovine Milk Fat and Vegetable Fat for Infant Formula: Implications for Infant Health. Int. Dairy J. 2019, 92, 37–49. DOI: 10.1016/j.idairyj.2019.01.005.
  • Zou, X.; Huang, J.; Jin, Q.; Guo, Z.; Liu, Y.; Cheong, L.; Xu, X.; Wang, X. Model for Human Milk Fat Substitute Evaluation Based on Triacylglycerol Composition Profile. J. Agric. Food Chem. 2013, 61, 167–175. DOI: 10.1021/jf304094p.
  • Brisson, G.; Britten, M.; Pouliot, Y. Electrically-Enhanced Crossflow Microfiltration for Separation of Lactoferrin from Whey Protein Mixtures. J. Memb. Sci. 2007, 297, 206–216. DOI: 10.1016/j.memsci.2007.03.046.
  • Wazed, M. A.; Ismail, M.; Farid, M. Pasteurized Ready-to-Feed (RTF) Infant Formula Fortified with Lactoferrin: A Potential Niche Product. J. Food Eng. 2020, 273, 109810. DOI: 10.1016/j.jfoodeng.2019.109810.
  • Johnston, W. H.; Ashley, C.; Yeiser, M.; Harris, C.; Stolz, S.; Wampler, J.; Wittke, A.; Timothy, R. Growth and Tolerance of Formula with Lactoferrin in Infants through One Year of Age: Double-Blind, Randomized, Controlled Trial. BMC Pediatr. 2015, 15, 173. DOI: 10.1186/s12887-015-0488-3.
  • Proudy, I.; Bougle, D.; Leclercq, R.; Vergnaud, M. Tracing of Enterobacter sakazakii Isolates in Infant Milk Formula Processing by BOX-PCR Genotyping. J. Appl. Microbiol. 2008, 105, 550–558. DOI: 10.1111/j.1365-2672.2008.03775.x.
  • Jiang, Y. J. Processing Technology for Infant Formula. In Human Milk Biochemistry and Infant Formula Manufacturing Technolog, 1st ed.; Guo, M., Ed.; Woodhead: Cambridge, UK, 2014; pp 211–229.
  • Bylund, G. Recombined Milk Products. In Dairy Processing Handbook, 1st ed.; Bylund, G., Ed.; Tetra Pak Processing Systems AB: Lund, Sweden, 1995; pp 375–384.
  • McSweeney, S. L. Emulsifiers in Infant Nutritional Products. In Food Emulsifiers and Their Applications, 2nd ed.; Hasenhuettl, G. L., Hartel, R. W., Eds.; Springer: New York, 2008; pp 233–261.
  • McSweeney, S. L.; Mulvihill, D. M.; O’Callaghan, D. M. The Influence of pH on the Heat-Induced Aggregation of Model Milk Protein Ingredient Systems and Model Infant Formula Emulsions Stabilised by Milk Protein Ingredients. Food Hydrocoll. 2004, 18, 109–125. DOI: 10.1016/S0268-005X(03)00049-3.
  • Buggy, A.; McManus, K.; Brodkorb, J.; Carthy, J.; Fenelon, A. Stabilising Effect of α-Lactalbumin on Concentrated Infant Milk Formula Emulsions Heat Treated Pre- or Post-Homogenisation. Dairy Sci. Technol. 2017, 96, 845–859. DOI: 10.1007/s13594-016-0306-1.
  • Murphy, E. G.; Tobin, J. T.; Roos, Y. H.; Fenelon, M. A. The Effect of High Velocity Steam Injection on the Colloidal Stability of Concentrated Emulsions for the Manufacture of Infant Formulations. Procedia Food Sci. 2011, 1, 1309–1315. DOI: 10.1016/j.profoo.2011.09.194.
  • Murphy, E. G.; Tobin, J. T.; Roos, Y. H.; Fenelon, M. A. A High-Solids Steam Injection Process for the Manufacture of Powdered Infant Milk Formula. Dairy Sci. Technol. 2013, 93, 463–475. DOI: 10.1007/s13594-013-0116-7.
  • Singh, H.; Creamer, L. K. Denaturation, Aggregation and Heat Stability of Milk Protein during the Manufacture of Skim Milk Powder. J. Dairy Res. 1991, 58, 269–283. DOI: 10.1017/S002202990002985X.
  • McDermott, R. L. Functionality of Dairy Ingredients in Infant Formula and Nutritional Specialty Products. Food Technol. 1987, 41, 91–103.
  • Manderson, G. A.; Hardman, M. J.; Creamer, L. K. Effect of Heat Treatment on the Conformation and Aggregation of β-Lactoglobulin A, B, and C. J. Agric. Food Chem. 1998, 46, 5052–5061. DOI: 10.1021/jf980515y.
  • Fox, P. F.; Uniacke-Lowe, T.; McSweeney, P. L. H.; O’Mahony, J. A. Heat Induced Changes in Milk. In Dairy Chemistry and Biochemistry, 2nd ed.; Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., O’Mahony, J. A., Eds.; Springer: London, UK, 2015; pp 345–375.
  • Guyomarc'h, F.; Nono, M.; Nicolai, T.; Durand, D. Heat-Induced Aggregation of Whey Proteins in the Presence of κ-Casein or Sodium Caseinate. Food Hydrocoll. 2009, 23, 1103–1110. DOI: 10.1016/j.foodhyd.2008.07.001.
  • Anema, S. G.; Lowe, E. K.; Li, Y. Effect of pH on the Viscosity of Heated Reconstituted Skim Milk. Int. Dairy J. 2004, 14, 541–548. DOI: 10.1016/j.idairyj.2003.10.007.
  • Euston, S. R.; Finnigan, S. R.; Hirst, R. L. Aggregation Kinetics of Heated Whey Protein-Stabilised Emulsions. Food Hydrocoll. 2000, 14, 155–161. DOI: 10.1016/S0268-005X(99)00061-2.
  • Kulmyrzaev, A.; Bryant, C.; McClements, D. J. Influence of Sucrose on the Thermal Denaturation, Gelation, and Emulsion Stabilization of Whey Proteins. J. Agric. Food Chem. 2000, 48, 1593–1597. DOI: 10.1021/jf9911949.
  • Walstra, P.; Jenness, R. Heating. In Dairy Chemistry & Physics, 1st ed.; Walstra, P., Jenness, R., Badings, H. T., Eds.; Wiley-Blackwell: New York, 1984; pp 162–185.
  • Dickinson, E. Stabilising Emulsion-Based Colloidal Structures with Mixed Food Ingredients. J. Sci. Food Agric. 2013, 93, 710–721. DOI: 10.1002/jsfa.6013.
  • Dalgleish, D. G.; Goff, H. D.; Brun, J. M.; Luan, B. Exchange Reactions between Whey Proteins and Caseins in Heated Soya Oil-in-Water Emulsion Systems—Overall Aspects of the Reaction. Food Hydrocoll. 2002, 16, 303–311. DOI: 10.1016/S0268-005X(01)00103-5.
  • Raikos, V. Effect of Heat Treatment on Milk Protein Functionality at Emulsion Interfaces. A Review. Food Hydrocoll. 2010, 24, 259–265. DOI: 10.1016/j.foodhyd.2009.10.014.
  • Millqvist-Fureby, A.; Elofsson, U.; Bergenståhl, B. Surface Composition of Spray-Dried Milk Protein-Stabilised Emulsions in Relation to Pre-Heat Treatment of Proteins. Colloids Surf. B Biointerfaces 2001, 21, 47–58. DOI: 10.1016/S0927-7765(01)00183-7.
  • Sourdet, S.; Relkin, P.; Fosseux, P. Y.; Aubry, V. Composition of Fat Protein Layer in Complex Food Emulsions at Various Weight Ratios of Casein-to-Whey Proteins. Lait 2002, 82, 567–578. DOI: 10.1051/lait:2002033.
  • Fox, M.; Akkerman, C.; Straatsma, H.; de Jong, P. Energy Reduction by High Dry Matter Concentration and Drying. New Food 2010, 2, 60–63.
  • Pisecky, J. Achieving Product Properties. In Handbook of Milk Powder Manufacture, 2nd ed.; Westergaard, V., Refstrup, E., Eds.; GEA Process Engineering A/S: Copenhagen, Denmark, 2012; pp 163–198.
  • Oldfield, D. J.; Taylor, M. W.; Singh, H. Effect of Preheating and Other Process Parameters on Whey Protein Reactions During Skim Milk Powder Manufacture. Int. Dairy J. 2005, 15, 501–511. DOI: 10.1016/j.idairyj.2004.09.004.
  • Singh, H. Interactions of Milk Proteins During the Manufacture of Milk Powders. Lait 2007, 87, 413–423. DOI: 10.1051/lait:2007014.
  • Westergaard, V. Milk Powder Technology: Evaporation and Spray Drying; GEA Niro A/S: Copenhagen, Denmark, 2004.
  • Dokic, P.; Jakovljevic, J.; Dokic-Baucal, L. Molecular Characteristics of Maltodextrins and Rheological Behaviour of Diluted and Concentrated Solutions. Colloids Surf. A Physicochem. Eng. Aspects 1998, 141, 435–440. DOI: 10.1016/S0927-7757(97)00118-0.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. Surface Composition of Industrial Spray-Dried Milk Powders. 2. Effects of Spray Drying Conditions on the Surface Composition. J. Food Eng. 2009, 94, 169–181. DOI: 10.1016/j.jfoodeng.2008.10.020.
  • Palzer, S. The Effect of Glass Transition on the Desired and Undesired Agglomeration of Amorphous Food Powders. Chem. Eng. Sci. 2005, 60, 3959–3968. DOI: 10.1016/j.ces.2005.02.015.
  • Kelly, A. L.; Fox, P. F. Manufacture and Properties of Dairy Powders. In Advanced Dairy Chemistry, 4th ed.; McSweeney, P., O'Mahony J., Eds.; Springer: New York, 2016; pp 1–33.
  • Anandharamakrishnan, C.; Ishwarya, S. P. Spray Drying Techniques for Food Ingredient Encapsulation; John Wiley & Sons: New Jersey, 2015.
  • Haque, M.; Chen, J.; Aldred, P.; Adhikari, B. Denaturation and Physical Characteristics of Spray-Dried Whey Protein Isolate Powders Produced in the Presence and Absence of Lactose, Trehalose, and Polysorbate-80. Drying Technol. 2015, 33, 1243–1254. DOI: 10.1080/07373937.2015.1023311.
  • Sharma, A.; Jana, A. H.; Chavan, R. S. Functionality of Milk Powders and Milk-Based Powders for End Use Applications—A Review. Compr. Rev. Food Sci. Food Safety 2012, 11, 518–528. DOI: 10.1111/j.1541-4337.2012.00199.x.
  • Baldwin, A. J. Insolubility of Milk Powder Products–A Mini Review. Dairy Sci. Technol. 2010, 90, 169–179. DOI: 10.1051/dst/2009056.
  • Baldwin, A. J.; Truong, G. N. T. Development of Insolubility in Dehydration of Dairy Milk Powders. Food Bioprod. Process. 2007, 85, 202–208. DOI: 10.1205/fbp07008.
  • Zhou, Y.; Roos, Y. H. Characterization of Carbohydrate-Protein Matrices for Nutrient Delivery. J. Food Sci. 2011, 76, E368–E376. DOI: 10.1111/j.1750-3841.2011.02126.x.
  • Birchal, V. S.; Passos, M. L.; Wildhagen, G. R. S.; Mujumdar, A. S. Effect of Spray-Dryer Operating Variables on the Whole Milk Powder Quality. Drying Technol. 2005, 23, 611–636. DOI: 10.1081/DRT-200054153.
  • Masum, A. K. M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Influence of Drying Temperatures and Storage Parameters on the Physicochemical Properties of Spray-Dried Infant Milk Formula Powders. Int. Dairy J. 2020, 105, 104696. DOI: 10.1016/j.idairyj.2020.104696.
  • Ozmen, L.; Langrish, T. A. G. A Study of the Limitations to Spray Dryer Outlet Performance. Drying Technol. 2003, 21, 895–917. DOI: 10.1081/DRT-120021691.
  • Langrish, T. A. G.; Marquez, N.; Kota, K. An Investigation and Quantitative Assessment of Particle Shape in Milk Powders from a Laboratory-Scale Spray Dryer. Drying Technol. 2006, 24, 1619–1630. DOI: 10.1080/07373930601031133.
  • Zouari, A.; Perrone, I. T.; Schuck, P.; Gaucheron, f.; Dolivet, A.; Attia, H.; Ayadi, M. A. Effect of Outlet Drying Temperature and Milk Fat Content on the Physicochemical Characteristics of Spray-Dried Camel Milk Powder. Drying Technol. 2019, 37, 1615–1624. DOI: 10.1080/07373937.2018.1526189.
  • Kemp, I. C.; Hartwig, T.; Herdman, R.; Hamilton, P.; Bisten, A.; Bermingham, S. Spray Drying with a Two-Fluid Nozzle to Produce Fine Particles: Atomization, Scale-Up, and Modelling. Drying Technol. 2016, 34, 1243–1252. DOI: 10.1080/07373937.2015.1103748.
  • Kemp, I. C.; Hartwig, T.; Hamilton, P.; Wadley, R.; Bisten, A. Production of Fine Lactose Particles from Organic Solvent in Laboratory and Commercial-Scale Spray Dryers. Drying Technol. 2016, 34, 830–842. DOI: 10.1080/07373937.2015.1084314.
  • Walton, D. E. The Morphology of Spray-Dried Particles a Qualitative View. Drying Technol. 2000, 18, 1943–1986. DOI: 10.1080/07373930008917822.
  • Mounsey, J. S.; Hogan, S. A.; Murray, B. A.; O'Callaghan, D. J. Effects of Hydrolysis on Solid-State Relaxation and Stickiness Behavior of Sodium Caseinate-Lactose Powders. J. Dairy Sci. 2012, 95, 2270–2281. DOI: 10.3168/jds.2011-4674.
  • Hogan, S.; O'Callaghan, D. Influence of Milk Proteins on the Development of Lactose-Induced Stickiness in Dairy Powders. Int. Dairy J. 2010, 20, 212–221. DOI: 10.1016/j.idairyj.2009.11.002.
  • Ozmen, L.; Langrish, T. A. G. An Experimental Investigation of the Wall Deposition of Milk Powder in a Pilot-Scale Spray Dryer. Drying Technol. 2003, 21, 1253–1272. DOI: 10.1081/DRT-120023179.
  • Ozmen, L.; Langrish, T. A. G. Comparison of Glass Transition Temperature and Sticky Point Temperature for Skim Milk Powder. Drying Technol. 2002, 20, 1177–1192. DOI: 10.1081/DRT-120004046.
  • Adhikari, B.; Howes, T.; Bhandari, B. R.; Truong, V. Characterization of the Surface Stickiness of Fructose-Maltodextrin Solutions During Drying. Drying Technol. 2003, 21, 17–34. DOI: 10.1081/DRT-120017281.
  • Shrestha, A. K.; Howes, T.; Adhikari, B. P.; Bhandari, B. R. Spray Drying of Skim Milk Mixed with Milk Permeate: Effect on Drying Behavior, Physicochemical Properties, and Storage Stability of Powder. Drying Technol. 2008, 26, 239–247. DOI: 10.1080/07373930701831663.
  • Adhikari, B.; Howes, T.; Bhandari, B.; Truong, V. Stickiness in Foods: A Review of Mechanisms and Test Methods. Int. J. Food Prop. 2001, 4, 1–33. DOI: 10.1081/JFP-100002186.
  • Kudra, T. Sticky Region in Drying—Definition and Identification. Drying Technol. 2003, 21, 1457–1469. DOI: 10.1081/DRT-120024678.
  • Hennigs, C.; Kockel, T. K.; Langrish, T. A. G. New Measurements of the Sticky Behavior of Skim Milk Powder. Drying Technol. 2001, 19, 471–484. DOI: 10.1081/DRT-100103929.
  • Zhang, S.; Liu, L.; Li, B.; Xie, Y.; Ouyang, J.; Wu, Y. Concentrations of Migrated Mineral Oil/Polyolefin Oligomeric Saturated Hydrocarbons (MOSH/POSH) in Chinese Commercial Milk Powder Products. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1261–1272. DOI: 10.1080/19440049.2019.1627001.
  • Wang, H. J.; An, D. S.; Lee, D. S. Powdered Infant Formula Packages in Asian Market Examined in Perspective of Food Packaging Functions. Korean J. Packag. Sci. Technol. 2016, 22, 59–70. DOI: 10.20909/kopast.2016.22.3.59.
  • An, D. S.; Wang, H. J.; Jaisan, C.; Lee, J. H.; Jo, M. G.; Lee, D. S. Effects of Modified Atmosphere Packaging Conditions on Quality Preservation of Powdered Infant Formula. Packag. Technol. Sci. 2018, 31, 441–446. DOI: 10.1002/pts.2372.
  • An, D. S.; Lee, J. H.; Lee, D. S. Water Vapor and Oxygen Barrier Estimation in Designing a Single-Serve Package of Powdered Infant Formula for Required Shelf Life. J. Food Process. Eng. 2018, 41, e12592.
  • Hanley, K. J.; Cronin, K.; O’Sullivan, C.; Fenelon, M. A.; O’Mahony, J. A.; Byrne, E. P. Effect of Composition on the Mechanical Response of Agglomerates of Infant Formulae. J. Food Eng. 2011, 107, 71–79. DOI: 10.1016/j.jfoodeng.2011.05.042.
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X.; Perrone, I.; de Carvalho, A.; Fenelon, M.; Kelly, P. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Drying Technol. 2016, 34, 1773–1790. DOI: 10.1080/07373937.2016.1233114.
  • Kosasih, L.; Bhandari, B.; Prakash, S.; Bansal, N.; Gaiani, C. Effect of Whole Milk Concentrate Carbonation on Functional, Physicochemical and Structural Properties of the Resultant Spray Dried Powder During Storage. J. Food Eng. 2016, 179, 68–77. DOI: 10.1016/j.jfoodeng.2016.02.005.
  • Kosasih, L.; Bhandari, B.; Prakash, S.; Bansal, N.; Gaiani, C. Physical and Functional Properties of Whole Milk Powders Prepared from Concentrate Partially Acidified with CO2 at Two Temperatures. Int. Dairy J. 2016, 56, 4–12. DOI: 10.1016/j.idairyj.2015.12.009.
  • Bouvier, J.; Collado, M.; Gardiner, D.; Scott, M.; Schuck, P. Physical and Rehydration Properties of Milk Protein Concentrates: Comparison of Spray-Dried and Extrusion-Porosified Powders. Dairy Sci. Technol. 2013, 93, 387–399. DOI: 10.1007/s13594-012-0100-7.
  • McCarthy, N. A.; Gee, V. L.; Hickey, D. K.; Kelly, A. L.; O'Mahony, J. A.; Fenelon, M. A. Effect of Protein Content on the Physical Stability and Microstructure of a Model Infant Formula. Int. Dairy J. 2013, 29, 53–59. DOI: 10.1016/j.idairyj.2012.10.004.
  • Nasirpour, A.; Scher, J.; Linder, M.; Desobry, S. Modeling of Lactose Crystallization and Color Changes in Model Infant Foods. J. Dairy Sci. 2006, 89, 2365–2373. DOI: 10.3168/jds.S0022-0302(06)72309-8.
  • Tham, T. W. Y.; Wang, C.; Yeoh, A. T. H.; Zhou, W. Moisture Sorption Isotherm and Caking Properties of Infant Formulas. J. Food Eng. 2016, 175, 117–126. DOI: 10.1016/j.jfoodeng.2015.12.014.
  • Tham, T. W. Y.; Yeoh, A. T. H.; Zhou, W. Characterisation of Aged Infant Formulas and Physicochemical Changes. Food Chem. 2017, 219, 117–125. DOI: 10.1016/j.foodchem.2016.09.107.
  • Cheng, H.; Zhu, R. G.; Erichsen, H.; Soerensen, J.; Petersen, M. A.; Skibsted, L. H. High Temperature Storage of Infant Formula Milk Powder for Prediction of Storage Stability at Ambient Conditions. Int. Dairy J. 2017, 73, 166–174. DOI: 10.1016/j.idairyj.2017.05.007.
  • Huppertz, T.; Gazi, I. Lactose in Dairy Ingredients: Effect on Processing and Storage Stability. J. Dairy Sci. 2016, 99, 6842–6851. DOI: 10.3168/jds.2015-10033.
  • Shrestha, A. K.; Howes, T.; Adhikari, B.; Wood, B. J.; Bhandari, B. R. Effect of Protein Concentration on the Surface Composition, Water Sorption and Glass Transition Temperature of Spray-Dried Skim Milk Powders. Food Chem. 2007, 104, 1436–1444. DOI: 10.1016/j.foodchem.2007.02.015.
  • Aguilera, J.; del Valle, J.; Karel, M. Caking Phenomena in Amorphous Food Powders. Trends Food Sci. Technol. 1995, 6, 149–155. DOI: 10.1016/S0924-2244(00)89023-8.
  • Roos, Y. H. Glass Transition Temperature and Its Relevance in Food Processing. Annu. Rev. Food Sci. Technol. 2010, 1, 469–496. DOI: 10.1146/annurev.food.102308.124139.
  • Langrish, T. A. G.; Wang, E. Crystallisation of Powders of Spray-Dried Lactose, Skim Milk and Lactose-Salt Mixtures. Int. J. Food Eng. 2006, 2, 1–15. DOI: 10.2202/1556-3758.1130.
  • Hogan, S. A.; Famelart, M. H.; O’Callaghan, D. J.; Schuck, P. A Novel Technique for Determining Glass-Rubber Transition in Dairy Powders. J. Food Eng. 2010, 99, 76–82. DOI: 10.1016/j.jfoodeng.2010.01.040.
  • Zhu, R.; Cheng, H.; Li, L.; Erichsen, H.; Petersen, M.; Soerensen, J.; Skibsted, L. Temperature Effect on Formation of Advanced Glycation End Products in Infant Formula Milk Powder. Int. Dairy J. 2018, 77, 1–9. DOI: 10.1016/j.idairyj.2017.09.005.
  • Jouppila, K.; Kansikas, J.; Roos, Y. H. Factors Affecting Crystallization and Crystallization Kinetics in Amorphous Corn Starch. Carbohydr. Polym. 1998, 36, 143–149. DOI: 10.1016/S0144-8617(98)00024-1.
  • Nijdam, J.; Ibach, A.; Eichhorn, K.; Kind, M. An X-Ray Diffraction Analysis of Crystallised Whey and Whey-Permeate Powders. Carbohydr. Res. 2007, 342, 2354–2364. DOI: 10.1016/j.carres.2007.08.001.
  • Barham, A. S.; Haque, M. K.; Roos, Y. H.; Hodnett, B. K. Crystallization of Spray Dried Lactose/Protein Mixtures in Humid Air. J. Cryst. Growth 2006, 295, 231–240. DOI: 10.1016/j.jcrysgro.2006.08.006.
  • Gombas, A.; Szabo-Revesz, P.; Kata, M.; Regdon, G.; Eros, I. Quantitative Determination of Crystallinity of α-Lactose Monohydrate by DSC. J. Therm. Anal. Calorim. 2002, 68, 503–510.
  • Fyfe, K. N.; Kravchuk, O.; Le, T.; Deeth, H. C.; Nguyen, A. V.; Bhandari, B. Storage Induced Changes to High Protein Powders: Influence on Surface Properties and Solubility. J. Sci. Food Agric. 2011, 91, 2566–2575. DOI: 10.1002/jsfa.4461.
  • Hartmann, M.; Palzer, S. Caking of Amorphous Powders – Material Aspects, Modelling and Applications. Powder Technol. 2011, 206, 112–121. DOI: 10.1016/j.powtec.2010.04.014.
  • Foster, K. D. The Prediction of Sticking in Dairy Powders. Ph.D. Thesis, Massey University, Auckland, New Zealand, 2002.
  • Li, K.; Woo, M. W.; Selomulya, C. Effects of Composition and Relative Humidity on the Functional and Storage Properties of Spray Dried Model Milk Emulsions. J. Food Eng. 2016, 169, 196–204. DOI: 10.1016/j.jfoodeng.2015.09.002.
  • Knudsen, J. C.; Antanuse, H. S.; Risbo, J.; Skibsted, L. H. Induction Time and Kinetics of Crystallisation of Amorphous Lactose, Infant Formula and Whole Milk Powder as Studied by Isothermal Differential Scanning Calorimetry. Milchwissenschaft 2002, 57, 543–546.
  • Nasirpour, A.; Landillon, V.; Cuq, B.; Scher, J.; Banon, S.; Desobry, S. Lactose Crystallization Delay in Model Infant Foods Made with Lactose, Beta-Lactoglobulin, and Starch. J. Dairy Sci. 2007, 90, 3620–3626. DOI: 10.3168/jds.2007-0175.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. Surface Composition of Industrial Spray-Dried Milk Powders. 1. Development of Surface Composition During Manufacture. J. Food Eng. 2009, 94, 163–168. DOI: 10.1016/j.jfoodeng.2008.09.021.
  • Gaiani, C.; Ehrhardt, J. J.; Scher, J.; Hardy, J.; Desobry, S.; Banon, S. Surface Composition of Dairy Powders Observed by X-Ray Photoelectron Spectroscopy and Effects on Their Rehydration Properties. Colloids Surf. B Biointerfaces 2006, 49, 71–78. DOI: 10.1016/j.colsurfb.2006.02.015.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. On the Mechanisms of Surface Formation and the Surface Compositions of Industrial Milk Powders. Drying Technol. 2003, 21, 265–278. DOI: 10.1081/DRT-120017747.
  • Faldt, P.; Bergenståhl, B. Changes in Surface Composition of Spray-Dried Food Powders due to Lactose Crystallization. LWT-Food Sci. Technol. 1996, 29, 438–446. DOI: 10.1006/fstl.1996.0067.
  • Thomas, M. E.; Scher, J.; Desobry-Banon, S.; Desobry, S. Milk Powders Ageing: Effect on Physical and Functional Properties. Crit. Rev. Food Sci. Nutr. 2004, 44, 297–322. DOI: 10.1080/10408690490464041.
  • Faldt, P.; Bergenståhl, B. Fat Encapsulation in Spray-Dried Food Powders. J. Am. Oil Chem. Soc. 1995, 72, 171–176. DOI: 10.1007/BF02638895.
  • Yazdanpanah, N.; Langrish, T. A. Comparative Study of Deteriorative Changes in the Ageing of Milk Powder. J. Food Eng. 2013, 114, 14–21. DOI: 10.1016/j.jfoodeng.2012.07.026.
  • Gaiani, C.; Schuck, P.; Scher, J.; Ehrhardt, J. J.; Arab-Tehrany, E.; Jacquot, M.; Banon, S. Native Phosphocaseinate Powder During Storage: Lipids Released onto the Surface. J. Food Eng. 2009, 94, 130–134. DOI: 10.1016/j.jfoodeng.2009.01.038.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. Effect of Surface Composition on the Flowability of Industrial Spray-Dried Dairy Powders. Colloids Surf. B Biointerfaces 2005, 46, 182–187. DOI: 10.1016/j.colsurfb.2005.11.005.
  • Masum, A. K. M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Effect of Storage Conditions on the Physicochemical Properties of Infant Milk Formula Powders Containing Different Lactose-to-Maltodextrin Ratios. Food Chem. 2020, 319, 126591. DOI: 10.1016/j.foodchem.2020.126591.
  • Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Changes in Physicochemical and Surface Characteristics in Model Infant Milk Formula Powder (IMF) During Storage. Drying Technol. 2020, 1755978.
  • Fang, Y.; Selomulya, C.; Chen, X. D. On Measurement of Food Powder Reconstitution Properties. Drying Technol. 2007, 26, 3–14. DOI: 10.1080/07373930701780928.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. Surface Characterization of Four Industrial Spray-Dried Dairy Powders in Relation to Chemical Composition, Structure and Wetting Property. Colloids Surf. B Biointerfaces 2002, 26, 197–212. DOI: 10.1016/S0927-7765(01)00334-4.
  • Mimouni, A.; Deeth, H.; Whittaker, A.; Gidley, M.; Bhandari, B. Investigation of the Microstructure of Milk Protein Concentrate Powders During Rehydration: Alterations During Storage. J. Dairy Sci. 2010, 93, 463–472. DOI: 10.3168/jds.2009-2369.
  • Murphy, E. G.; Regost, N. E.; Roos, Y. H.; Fenelon, M. A. Powder and Reconstituted Properties of Commercial Infant and Follow-On Formulas. Foods 2020, 9, 84. DOI: 10.3390/foods9010084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.