293
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of pulse-spouted infrared freeze drying on nutrition, flavor, and application of horseradish

, , &
Pages 1165-1175 | Received 01 Jul 2020, Accepted 10 Aug 2020, Published online: 06 Oct 2020

References

  • Sultana, T.; Savage, G. P.; Mcneil, D. L.; Porter, G. P.; Clark, B. Comparison of Flavour Compounds in Wasabi and Horseradish. J. Food Agr. Environ. 2003, 1, 117–121.
  • Lu, Z.; Dockery, C. R.; Crosby, M.; Chavarria, K.; Patterson, B.; Giedd, M. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus. Front. Microbiol. 2016, 7, 1403. DOI: 10.3389/fmicb.2016.01403.
  • Torrijos, R.; Nazareth, T. M.; Perez, J.; Manes, J.; Meca, G. Development of a Bioactive Sauce Based on Oriental Mustard Flour with Antifungal Properties for Pita Bread Shelf Life Improvement. Molecules 2019, 24, 1019. DOI: 10.3390/molecules24061019.
  • Olaimat, A. N.; Holley, R. A. Effects of Changes in pH and Temperature on the Inhibition of Salmonella and Listeria monocytogenes by Allyl Isothiocyanate. Food Control 2013, 34, 414–419. DOI: 10.1016/j.foodcont.2013.05.014.
  • Nguyen, N. M.; Gonda, S.; Vasas, G. A Review on the Phytochemical Composition and Potential Medicinal Uses of Horseradish (Armoracia rusticana) Root. Food Rev. Int. 2013, 29, 261–275. DOI: 10.1080/87559129.2013.790047.
  • Zhang, M.; Tang, J.; Mujumdar, A. S.; Wang, S. Trends in Microwave-Related Drying of Fruits and Vegetables. Trends Food Sci. Technol. 2006, 17, 524–534. DOI: 10.1016/j.tifs.2006.04.011.
  • Roknul, A. S. M.; Zhang, M.; Mujumdar, A. S.; Wang, Y. C. A Comparative Study of Four Drying Methods on Drying Time and Quality Characteristics of Stem Lettuce Slices (Lactuca sativa L.). Drying Technol. 2014, 32, 657–666. DOI: 10.1080/07373937.2013.850435.
  • Huang, L. L.; Zhang, M. Trends in Development of Dried Vegetable Products as Snacks. Drying Technol. 2012, 30, 448–461. 644648. DOI: 10.1080/07373937.2011.
  • Duan, X.; Zhang, M.; Li, X. L.; Mujumdar, A. S. Microwave Freeze Drying of Sea Cucumber Coated with Nanoscale Silver. Drying Technol. 2008, 26, 413–419. DOI: 10.1080/07373930801929136.
  • Aboud, S.; Altemimi, A.; HiIphy, A.; Yi, C.; Cacciola, F. A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules 2019, 24, 4125. DOI: 10.3390/molecules24224125.
  • Antal, T.; Kerekes, B. Investigation of Hot Air- and Infrared-Assisted Freeze-Drying of Apple. J. Food Process Preserv. 2016, 40, 257–269. DOI: 10.1111/jfpp.12603.
  • Wu, X. F.; Zhang, M.; Bhandari, B. A Novel Infrared Freeze Drying (IRFD) Technology to Lower the Energy Consumption and Keep the Quality of Cordyceps militaris. Innov. Food Sci. Emerg. Technol. 2019, 54, 34–42. DOI: 10.1016/j.ifset.2019.03.003.
  • Zhang, M.; Chen, H. Z.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. C. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Wang, Y. C.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices—Effect on Product Quality. Food Bioprocess Technol. 2013, 6, 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • An, J. S.; Zhang, M.; Lu, Q. R.; Zhang, Z. G. Effect of a Prestorage Treatment with 6-Benzylaminopurine and Modified Atmosphere Packaging Storage on the Respiration and Quality of Green Asparagus Spears. J. Food Eng. 2006, 77, 951–957. DOI: 10.1016/j.jfoodeng.2005.08.024.
  • Li, L.; Zhang, M.; Zhou, L. A Promising Pulse-Spouted Microwave Freeze Drying Method Used for Chinese Yam Cubes Dehydration: Quality, Energy Consumption, and Uniformity. Drying Technol. 2019, 1–14. 2019.1624564. DOI: 10.1080/07373937.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R. X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94, 1827–1834. DOI: 10.1002/jsfa.6501.
  • Fan, K.; Zhang, M.; Chen, H. Z. Effect of Ultrasound Treatment Combined with Carbon Dots Coating on the Microbial and Physicochemical Quality of Fresh-Cut Cucumber. Food Bioprocess Technol. 2020, 13, 648–660. DOI: 10.1007/s11947-020-02424-x.
  • Meza, A.; Rojas, P.; Cely-Veloza, W.; Guerrero-Perilla, C.; Coy-Barrera, E. Variation of Isoflavone Content and DPPH• Scavenging Capacity of Phytohormone-Treated Seedlings after in Vitro Germination of Cape Broom (Genista monspessulana). S. Afr. J. Bot. 2020, 130, 64–74. DOI: 10.1016/j.sajb.2019.12.006.
  • Qiu, L. Q.; Zhang, M.; Bhandari, B.; Fang, Z. X.; Liu, Y. P. Size Reduction of Raw Material Powder: The Key Factor to Affect the Properties of Wasabi (Eutrema yunnanense) Paste. Adv. Powder Technol. 2019, 30, 1544–1550. DOI: 10.1016/j.apt.2019.04.032.
  • Liu, Y. H.; Sun, Y.; Yu, H. C.; Yin, Y.; Li, X.; Duan, X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Drying Technol. 2017, 35, 564–576. DOI: 10.1080/07373937.2016.1193867.
  • Wiktor, A.; Witrowa-Rajchert, D. Drying Kinetics and Quality of Carrots Subjected to Microwave-Assisted Drying Preceded by Combined Pulsed Electric Field and Ultrasound Treatment. Drying Technol. 2020, 38, 176–188. DOI: 10.1080/07373937.2019.1642347.
  • Yamato, M. A. C.; da Silva, V. M.; de Cássia, G. S.; Ferrari, C. C.; Germer, S. P. M. Stability of Mango Flakes Obtained by Drum Drying with Different Additives. Drying Technol. 2020, 38, 361–375. DOI: 10.1080/07373937.2019.1571505.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Osmotic Dehydration on Microwave Freeze-Drying Characteristics and Quality of Potato Chips. Drying Technol. 2010, 28, 798–806. DOI: 10.1080/07373937.2010.482700.
  • Ju, H. Y.; Zhao, S. H.; Mujumdar, A. S.; Zhao, H. Y.; Duan, X.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Step-Down Relative Humidity Convective Air Drying Strategy to Enhance Drying Kinetics, Efficiency, and Quality of American Ginseng Root (Panax quinquefolium). Drying Technol. 2020, 38, 903–916. DOI: 10.1080/07373937.2019.1597373.
  • Xi, H. H.; Liu, Y. H.; Guo, L. G.; Hu, R. R. Effect of Ultrasonic Power on Drying Process and Quality Properties of Far-Infrared Radiation Drying on Potato Slices. Food Sci. Biotechnol. 2020, 29, 93–101. DOI: 10.1007/s10068-019-00645-1.
  • Putranto, A.; Chen, X. D. Reaction Engineering Approach Modeling of Intensified Drying of Fruits and Vegetables Using Microwave, Ultrasonic and Infrared-Heating. Drying Technol. 2020, 38, 747–757. DOI: 10.1080/07373937.2019.1708750.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Drying Technol. 2020, 38, 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Khampakool, A.; Soisungwan, S.; Park, S. H. Potential Application of Infrared Assisted Freeze Drying (IRAFD) for Banana Snacks: Drying Kinetics, Energy Consumption, and Texture. LWT – Food Sci. Technol. 2019, 99, 355–363. DOI: 10.1016/j.lwt.2018.09.081.
  • Antal, T.; Tarek-Tilistyák, J.; Cziáky, Z.; Sinka, L. Comparison of Drying and Quality Characteristics of Pear (Pyrus communis L.) Using Mid-Infrared-Freeze Drying and Single Stage of Freeze Drying. Int. J. Food Eng. 2017, 13, 1–13. DOI: 10.1515/ijfe-2016-0294.
  • Harguindeguy, M.; Fissore, D. On the Effects of Freeze-Drying Processes on the Nutritional Properties of Foodstuff: A Review. Drying Technol. 2020, 38, 846–868. DOI: 10.1080/07373937.2019.1599905.
  • Xue, Y. L.; Chen, J. N.; Han, H. T.; Liu, C. J.; Gao, Q.; Li, J. H.; Li, D. J.; Tanokura, M.; Liu, C. Q. Multivariate Analyses of the Physicochemical Properties of Turnip (Brassica rapa L.) Chips Dried Using Different Methods. Drying Technol. 2020, 38, 411–419. DOI: 10.1080/07373937.2019.1578971.
  • Hu, Q. G.; Zhang, M.; Mujumdar, A. S.; Du, W. H.; Sun, J. C. Effects of Different Drying Methods on the Quality Changes of Granular Edamame. Drying Technol. 2006, 24, 1025–1032. DOI: 10.1080/07373930600776217.
  • Vega-Gálvez, A.; Poblete, J.; Quispe-Fuentes, I.; Uribe, E.; Bilbao-Sainz, C.; Pastén, A. Chemical and Bioactive Characterization of Papaya (Vasconcellea pubescens) under Different Drying Technologies: Evaluation of Antioxidant and Antidiabetic Potential. Food Measure. 2019, 13, 1980–1990. DOI: 10.1007/s11694-019-00117-4.
  • Hnin, K. K.; Zhang, M.; Devahastin, S.; Wang, B. Influence of Novel Infrared Freeze Drying of Rose Flavored Yogurt Melts on Their Physicochemical Properties, Bioactive Compounds and Energy Consumption. Food Bioprocess Technol. 2019, 12, 2062–2073. DOI: 10.1007/s11947-019-02368-x.
  • Kroener, E. M.; Buettner, A. Unravelling Important Odorants in Horseradish (Armoracia rusticana). Food Chem. 2017, 232, 455–465. DOI: 10.1016/j.foodchem.2017.04.042.
  • Agneta, R.; Möllers, C.; Rivelli, A. R. Horseradish (Armoracia rusticana), a Neglected Medical and Condiment Species with a Relevant Glucosinolate Profile: A Review. Genet. Resour. Crop Evol. 2013, 60, 1923–1943. DOI: 10.1007/s10722-013-0010-4.
  • Wu, X. F.; Zhang, M.; Bhandari, B.; Li, Z. Q. Effects of Microwave Assisted Pulse Fluidized Bed Freeze-Drying (MPFFD) on Quality Attributes of Cordyceps militaris. Food Biosci. 2019, 28, 7–14. DOI: 10.1016/j.fbio.2019.01.001.
  • Ohtsuru, M.; Hata, T. The Interaction of L-Ascorbic Acid with the Active Center of Myrosinase. Biochim. Biophys. Acta 1979, 567, 384–391. DOI: 10.1016/0005-2744(79)90124-4.
  • Li, X.; Kushad, M. M. Purification and Characterization of Myrosinase from Horseradish (Armoracia rusticana) Roots. Plant Physiol. Biochem. 2005, 43, 503–511. DOI: 10.1016/j.plaphy.2005.03.015.
  • Xu, X.; Zhang, L.; Feng, Y. B.; ElGasim, A.; Yagoubc, A. E. A.; Sun, Y. H.; Ma, H. L.; Zhou, C. S. Vacuum Pulsation Drying of Okra (Abelmoschus esculentus L. Moench): Better Retention of the Quality Characteristics by Flat Sweep Frequency and Pulsed Ultrasound Pretreatment. Food Chem. 2020, 326, 326–332. DOI: 10.1016/j.foodchem.2020.127026.
  • Qiu, L. Q.; Zhang, M.; Bhandari, B.; Wang, B. Effects of Infrared Freeze Drying on Volatile Profile, FTIR Molecular Structure Profile and Nutritional Properties of Edible Rose Flower (Rosa Rugosa Flower). J. Sci. Food Agric. 2020, DOI: 10.1002/jsfa.10538.
  • Hofmann, T. Taste-Active Maillard Reaction Products: The "Tasty" World of Nonvolatile Maillard Reaction Products. Ann. N. Y. Acad. Sci. 2005, 1043, 20–29. DOI: 10.1196/annals.1333.003.
  • Qiu, L. Q.; Zhang, M.; Wang, Y. C.; Liu, Y. P. Physicochemical and Nutritional Properties of Wasabi (Eutrema yunnanense) Dried by Four Different Drying Methods. Drying Technol. 2019, 37, 363–372. DOI: 10.1080/07373937.2018.1458318.
  • Liu, X.; Yan, X.; Bi, J. F.; Wu, X. Y.; Liu, J. N.; Zhou, M. Identification of Phenolic Compounds and Antioxidant Activity of Guava Dehydrated by Different Drying Methods. Drying Technol. 2020, 38, 987–1000. DOI: 10.1080/07373937.2019.1607872.
  • Bendary, E.; Francis, R. R.; Ali, H. M. G.; Sarwat, M. I.; Hady, S. E. Antioxidant and Structure–Activity Relationships (SARs) of Some Phenolic and Anilines Compounds. Ann. Agric. Sci. 2013, 58, 173–181. DOI: 10.1016/j.aoas.2013.07.002.
  • Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. DOI: 10.3390/medicines5030093.
  • Zhu, Y. Q.; Gao, H. X.; Liu, W.; Zou, L. Q.; McClements, D. J. A Review of the Rheological Properties of Dilute and Concentrated Food Emulsions. J. Texture Stud. 2020, 51, 45–55. DOI: 10.1111/jtxs.12444.
  • Yang, Y. Y.; Fu, L. Y.; Zhang, Y. L.; Zhang, R. G.; Chen, H.; Geng, S. W. Extraction of Deoiled Walnut Dietary Fibers and Effects of Particle Sizes on the Physiochemical Properties. FSTR. 2018, 24, 981–990. DOI: 10.3136/fstr.24.981.
  • Tsai, S. Y.; Huang, F. K.; Juan, H. W.; Lin, C. P. Evaluation of Food-Processing Conditions of Various Particle Sizes of Tremella fuciformis Powder via DSC and TG Analyses. J. Therm. Anal. Calorim. 2018, 134, 857–864. DOI: 10.1007/s10973-018-7466-6.
  • Jiang, H.; Zheng, L. Y.; Zou, Y. H.; Tong, Z. B.; Han, S. Y.; Wang, S. J. 3D Food Printing: Main Components Selection by Considering Rheological Properties. Crit. Rev. Food Sci. Nutr. 2019, 59, 2335–2347. DOI: 10.1080/10408398.2018.1514363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.