968
Views
44
CrossRef citations to date
0
Altmetric
Research Article

Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes

, , , , , , , & show all
Pages 418-431 | Received 07 May 2020, Accepted 30 Aug 2020, Published online: 17 Sep 2020

References

  • Qiu, G.; Jiang, Y.; Deng, Y. Drying Characteristics, Functional Properties and in Vitro Digestion of Purple Potato Slices Dried by Different Methods. J. Integr. Agric. 2019, 18, 2162–2172. DOI: 10.1016/S2095-3119(19)62654-7.
  • FAO. FAO stat database. 2018. http://faostat.fao.org.
  • Wu, B.; Guo, Y.; Wang, J.; Pan, Z.; Ma, H. Effect of Thickness on Non-Fried Potato Chips Subjected to Infrared Radiation Blanching and Drying. J. Food Eng. 2018, 237, 249–255. DOI: 10.1016/j.jfoodeng.2018.05.030.
  • Amjad, W.; Crichton, S.; Munir, A.; Hensel, O.; Sturm, B. Hyperspectral Imaging for the Determination of Potato Slice Moisture Content and Chromaticity during the Convective Hot Air Drying Process. Biosyst. Eng. 2018, 166, 170–183. DOI: 10.1016/j.biosystemseng.2017.12.001.
  • Deng, L. Z.; Yang, X. H.; Mujumdar, A. S.; Zhao, J. H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z. J.; Xiao, H. W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Drying Technol. 2018, 36, 893–907. DOI: 10.1080/07373937.2017.1361439.
  • Ju, H. Y.; El-Mashad, H. M.; Fang, X. M.; Pan, Z.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Drying Characteristics and Modeling of Yam Slices under Different Relative Humidity Conditions. Drying Technol. 2016, 34, 296–306. DOI: 10.1080/07373937.2015.1052082.
  • Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of Drying Conditions on the Quality of Vacuum-Microwave Dried Potato Cubes. J. Food Eng. 2007, 81, 306–312. DOI: 10.1016/j.jfoodeng.2006.10.028.
  • Liu, Z. L.; Bai, J. W.; Wang, S. X.; Meng, J. S.; Wang, H.; Yu, X. L.; Gao, Z. J.; Xiao, H. W. Prediction of Energy and Exergy of Mushroom Slices Drying in Hot Air Impingement Dryer by Artificial Neural Network. Drying Technol. 2019. DOI: 10.1080/07373937.2019.1607873.
  • Wang, D.; Dai, J. W.; Ju, H. Y.; Xie, L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Drying Kinetics of American Ginseng Slices in Thin-Layer Air Impingement Dryer. Int. J. Food Eng. 2015, 11, 701–711. DOI: 10.1515/ijfe-2015-0002.
  • Xiao, H. W.; Pang, C. L.; Wang, L. H.; Bai, J. W.; Yang, W. X.; Gao, Z. J. Drying Kinetics and Quality of Monukka Seedless Grapes Dried in an Air-Impingement Jet Dryer. Biosyst. Eng. 2010, 105, 233–240. DOI: 10.1016/j.biosystemseng.2009.11.001.
  • Bai, J. W.; Sun, D. W.; Xiao, H. W.; Mujumdar, A. S.; Gao, Z. J. Novel High-Humidity Hot Air Impingement Blanching (HHAIB) Pretreatment Enhances Drying Kinetics and Color Attributes of Seedless Grapes. Innovative Food Sci. Emerging Technol. 2013, 20, 230–237. DOI: 10.1016/j.ifset.2013.08.011.
  • Yu, X. L.; Zielinska, M.; Ju, H. Y.; Mujumdar, A. S.; Duan, X.; Gao, Z. J.; Xiao, H. W. Multistage Relative Humidity Control Strategy Enhances Energy and Exergy Efficiency of Convective Drying of Carrot Slices. Int. J. Heat Mass Transf. 2020, 149, 119231. DOI: 10.1016/j.ijheatmasstransfer.2019.119231.
  • Murugesan, K.; Thomas, H. R.; Cleall, P. J. An Investigation of the Influence of Two-Stage Drying Conditions on Convective Drying of Porous Materials. Int. J. Num. Meth. Heat Fluid Flow. 2002, 12, 29–46. DOI: 10.1108/09615530210413154.
  • Dai, J. W.; Rao, J. Q.; Wang, D.; Xie, L.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Process-Based Drying Temperature and Humidity Integration Control Enhances Drying Kinetics of Apricot Halves. Dry. Technol. 2015, 33, 365–376. DOI: 10.1080/07373937.2014.954667.
  • Ju, H. Y.; Zhao, S. H.; Mujumdar, A. S.; Fang, X. M.; Gao, Z. J.; Zheng, Z. A.; Xiao, H. W. Energy Efficient Improvements in Hot Air Drying by Controlling Relative Humidity Based on Weibull and Bi-Di Models. Food Bioprod. Process 2018, 111, 20–29. DOI: 10.1016/j.fbp.2018.06.002.
  • Zhang, Y.; Zhu, G.; Li, X.; Zhao, Y.; Lei, D.; Ding, G.; Ambrose, K.; Liu, Y. Combined Medium- and Short-Wave Infrared and Hot Air Impingement Drying of Sponge Gourd (Luffa cylindrical) Slices. J. Food Eng. 2020, 284, 110043. DOI: 10.1016/j.jfoodeng.2020.110043.
  • Rojas, M. L.; Augusto, P. E. Ethanol and Ultrasound Pre-Treatments to Improve Infrared Drying of Potato Slices. Innov. Food Sci. Emerg. Technol. 2018, 49, 65–75. fset.2018.08.005. DOI: 10.1016/i.
  • Bi, J.; Chen, Q.; Zhou, Y.; Liu, X.; Wu, X.; Chen, R. Optimization of Short- and Medium-Wave Infrared Drying and Quality Evaluation of Jujube Powder. Food Bioprocess Technol. 2014, 7, 2375–2387. DOI: 10.1007/s11947-013-1245-y.
  • Pawar, S. B.; Pratape, V. M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2017, 40, 12308. DOI: 10.1111/jfpe.12308.
  • Liu, Z. L.; Bai, J. W.; Yang, W. X.; Wang, J.; Deng, L. Z.; Yu, X. L.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) and Drying Parameters on Drying Characteristics and Quality of Broccoli Florets. Drying Technol. 2019, 37, 1251–1264. DOI: 10.1080/07373937.2018.1494185.
  • Movagharnejad, K.; Nikzad, M. Modeling of Tomato Drying Using Artificial Neural Network. Comput. Electron. Agric. 2007, 59, 78–85. DOI: 10.1016/j.compag.2007.05.003.
  • Martynenko, A. I.; Yang, S. X. Biologically Inspired Neural Computation for Ginseng Drying Rate. Biosyst. Eng. 2006, 95, 385–396. DOI: 10.1016/j.biosystemseng.2006.07.009.
  • Özdemir, M. B.; Aktaş, M.; Şevik, S.; Khanlari, A. Modeling of a Convective-Infrared Kiwifruit Drying Process. Int. J. Hydrog. Energy 2017, 42, 18005–18013. DOI: 10.1016/j.ijhydene.2017.01.012.
  • Murthy, T. P. K.; Manohar, B. Hot Air Drying Characteristics of Mango Ginger: Prediction of Drying Kinetics by Mathematical Modeling and Artificial Neural Network. J. Food Sci. Technol. 2014, 51, 3712–3721. DOI: 10.1007/s13197-013-0941-y.
  • AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990.
  • Aversa, M.; Curcio, S.; Calabrò, V.; Iorio, G. Experimental Evaluation of Quality Parameters during Drying of Carrot Samples. Food Bioprocess Technol. 2012, 5, 118–129. DOI: 10.1007/s11947-009-0280-1.
  • Thorat, I. D.; Mohapatra, D.; Sutar, R. F.; Kapdi, S. S.; Jagtap, D. D. Mathematical Modeling and Experimental Study on Thin-Layer Vacuum Drying of Ginger. Food Bioprocess Technol. 2012, 5, 1379–1383. DOI: 10.1007/s11947-009-0300-1.
  • Xiao, H. W.; Yao, X. D.; Lin, H.; Yang, W. X.; Meng, J. S.; Gao, Z. J. Effect of SSB (Superheated Steam Blanching) Time and Drying Temperature on Hot Air Impingement Drying Kinetics and Quality Attributes of Yam Slices. J. Food Process Eng. 2012, 35, 370–390. DOI: 10.1111/j.1745-4530.2010.00594.x.
  • Wang, H.; Fang, X. M.; Sutar, P. P.; Meng, J. S.; Wang, J.; Yu, X. L.; Xiao, H. W. Effects of Vacuum-Steam Pulsed Blanching on Drying Kinetics, Colour, Phytochemical Contents, Antioxidant Capacity of Carrot and the Mechanism of Carrot Quality Changes Revealed by Texture, Microstructure and Ultrastructure. Food Chem. 2020, 338, 127799. DOI: 10.1016/j.foodchem.2020.127799.
  • Tao, Y.; Sun, D.-W.; Górecki, A.; Błaszczak, W.; Lamparski, G.; Amarowicz, R.; Fornal, J.; Jeliński, T. Effects of High Hydrostatic Pressure Processing on the Physicochemical and Sensorial Properties of a Red Wine. Innov. Food Sci. Emerg. 2012, 16, 409–416. DOI: 10.1016/j.ifset.2012.09.005.
  • Wang, H.; Zhang, Q.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Pei, Y. P.; Wu, W.; Zielinska, M.; Xiao, H. W. High-Humidity Hot Air Impingement Blanching (HHAIB) Efficiently Inactivates Enzymes, Enhances Extraction of Phytochemicals and Mitigates Brown Actions of Chili Pepper. Food Control 2020, 111, 107050. DOI: 10.1016/j.foodcont.2019.107050.
  • Bisi, M.; Goyal, N. K. Artificial Neural Network Applications for Software Reliability Predictions; Wiley: Hoboken, NJ, 2017.
  • Li, Q.; Meng, Q.; Cai, J.; Yoshino, H.; Mochida, A. Predicting Hourly Cooling Load in the Building: A Comparison of Support Vector Machine and Different Artificial Neural Networks. Energy Convers. Manage. 2009, 50, 90–96. 2008.08.033. DOI: 10.1016/j.enconman.
  • Dong, S.; Zhang, Y.; He, Z.; Deng, N.; Yu, X.; Yao, S. Investigation of Support Vector Machine and Back Propagation Artificial Neural Network for Performance Prediction of the Organic Rankine Cycle System. Energy 2018, 144, 851–864. DOI: 10.1016/j.energy.2017.12.094.
  • Nadian, M. H.; Rafiee, S.; Aghbashlo, M.; Hosseinpour, S.; Mohtasebi, S. S. Continuous Real-Time Monitoring and Neural Network Modeling of Apple Slices Color Changes during Hot Air Drying. Food Bioprod. Process 2015, 94, 263–274. DOI: 10.1016/j.fbp.2014.03.005.
  • Walker, S. J.; Archer, P.; Banks, J. G. Growth of Listeria monocytogenes at Refrigeration Temperatures. J. Appl. Bacteriol. 1990, 68, 157–162. DOI: 10.1111/j.1365-2672.1990.tb02561.x.
  • Hajmeer, M. N.; Basheer, I. A. A Hybrid Bayesian–Neural Network Approach for Probabilistic Modeling of Bacterial Growth/No-Growth Interface. Int. J. Food Microbiol. 2003, 82, 233–243. DOI: 10.1016/S0168-1605(02)00308-2.
  • The United States Pharmacopieial Convention. USP 29-NF24; The United States Pharmacopieial Convention: Rockville, 2006; pp 3802–3803.
  • Korbel, E.; Servent, A.; Billaud, C.; Brat, P. Heat Inactivation of Polyphenol Oxidase and Peroxidase as a Function of Water Activity: A Case Study of Mango Drying. Dry. Technol. 2013, 31, 1675–1680. DOI: 10.1080/07373937.2013.808659.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Investigation of Bound and Free Water in Plant-Based Food Material Using NMR T2 Relaxometry. Innov. Food Sci. Emerg. Technol. 2016, 38, 252–261. DOI: 10.1016/j.ifset.2016.10.015.
  • Wang, J.; Mujumdar, A. S.; Deng, L. Z.; Gao, Z. J.; Xiao, H. W.; Raghavan, G. S. V. High-Humidity Hot Air Impingement Blanching Alters Texture, Cell-Wall Polysaccharides, Water Status and Distribution of Seedless Grape. Carbohydr. Polym. 2018, 194, 9–17. DOI: 10.1016/j.carbpol.2018.04.023.
  • Xiao, H. W.; Gao, Z. J.; Lin, H.; Yang, W. X. Air Impingement Drying Characteristics and Quality of Carrot Cubes. J. Food Process Eng. 2010, 33, 899–918. DOI: 10.1111/j.1745-4530.2008.00314.x.
  • El-Mesery, H. S.; Mwithiga, G. Performance of a Convective, Infrared and Combined Infrared- Convective Heated Conveyor-Belt Dryer. J. Food Sci. Technol. 2015, 52, 2721–2730. DOI: 10.1007/s13197-014-1347-1.
  • Riadh, M. H.; Ahmad, S. A. B.; Marhaban, M. H.; Soh, A. C. Infrared Heating in Food Drying: An Overview. Dry. Technol. 2015, 33, 322–335. DOI: 10.1080/07373937.2014.951124.
  • Pathare, P. B.; Opara, L. U.; Al-Said, F. Colour Measurement and Analysis in Fresh and Processed Foods. Food Bioprocess Technol. 2013, 6, 36–60. DOI: 10.1007/s11947-012-0867-9.
  • Xiao, H. W.; Law, C. L.; Sun, D. W.; Gao, Z. J. Color Change Kinetics of American Ginseng (Panax quinquefolium) Slices during Air Impingement Drying. Dry. Technol. 2014, 32, 418–427. DOI: 10.1080/07373937.2013.834928.
  • Zielinska, M.; Markowski, M. Colour Characteristics of Carrots: Effect of Drying and Rehydration. Int. J. Food Prop. 2012, 15, 450–466. DOI: 10.1080/10942912.2010.489209.
  • Xiao, H. W.; Bai, J. W.; Xie, L.; Sun, D. W.; Gao, Z. J. Thin-Layer Air Impingement Drying Enhances Drying Rate of American Ginseng (Panax quinquefolium L.) Slices with Quality Attributes Considered. Food Bioprod. Process 2015, 94, 581–591. DOI: 10.1016/j.fbp.2014.08.008.
  • Salarikia, A. ;M.; Ashtiani, S. H.; Golzarian, M. R. Comparison of Drying Characteristics and Quality of Peppermint Leaves Using Different Drying Methods. J. Food Process. Preserv. 2017, 41, 12930. DOI: 10.1111/jfpp.12930.
  • Kondo, Y.; Higashi, C.; Iwama, M.; Ishihara, K.; Handa, S.; Mugita, H.; Maruyama, N.; Koga, H.; Ishigami, A. Bioavailability of Vitamin C from Mashed Potatoes and Potato Chips after Oral Administration in Healthy Japanese Men. Br. J. Nutr. 2012, 107, 885–892. DOI: 10.1017/S0007114511003643.
  • Santos, P. H. S.; Silva, M. A. Retention of Vitamin C in Drying Processes of Fruits and vegetables-A Review. Drying Technol. 2008, 26, 1421–1437. DOI: 10.1080/07373930802458911.
  • Xiao, H. W.; Mujumdar, A. S. Importance of Drying in Support Human Welfare. Dry. Technol. 2020, 38, 1542–1543. DOI: 10.1080/07373937.2019.1686476.
  • Xiao, H. W. Guest Editorial: Some Mitigation Strategies for Climate Change. Drying Technol. 2015, 33, 1679–1680. 1083730. DOI: 10.1080/07373937.2015.
  • Wang, J.; Bai, T. Y.; Wang, D.; Fang, X. M.; Xue, L. Y.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Drying Technol. 2019, 37, 301–311. DOI: 10.1080/07373937.2017.1423325.
  • Samui, P.; Dixon, B. Application of Support Vector Machine and Relevance Vector Machine to Determine Evaporative Losses Inreservoirs. Hydrol. Process. 2012, 26, 1361–1369. DOI: 10.1002/hyp.8278.
  • Lertworasirikul, S.; Tipsuwan, Y. Moisture Content and Water Activity Prediction of Semi-Finished Cassava Crackers from Drying Process with Artificial Neural Network. J. Food Eng. 2008, 84, 65–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.