277
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Production of bromelain aerosols using spray-freeze-drying technique for pulmonary supplementation

, , &
Pages 358-370 | Received 31 Mar 2020, Accepted 27 Sep 2020, Published online: 28 Oct 2020

References

  • Secor, E. R.; Jr Carson, I. W.; Cloutier, M. M.; Guernsey, L. A.; Schramm, C. M.; Wu, C. A.; Thrall, R. S. Bromelain Exerts anti-Inflammatory Effects in an Ovalbumin-Induced Murine Model of Allergic Airway Disease. Cell. Immunol. 2005, 237, 68–75. DOI: 10.1016/j.cellimm.2005.10.002.
  • Cabral, A. C. S.; Said, S.; Oliveira, W. P. Retention of the Enzymatic Activity and Product Properties during Spray Drying of Pineapple Stem Extract in Presence of Maltodextrin. Int J. Food Prop. 2009, 12, 536–548. DOI: 10.1080/10942910801942483.
  • Mynott, T. L.; Ladhams, A.; Scarmato, P.; Engwerda, C. R. Bromelain, from Pineapple Stems, Proteolytically Blocks Activation of Extracellular Regulated Kinase-2 in T Cells. J. Immunol. 1999, 163, 2568–2575.
  • Hale, L. P.; Haynes, B. F. Bromelain Treatment of Human T Cells Removes CD44, CD45RA, E2/MIC2, CD6, CD7, CD8and Leu 8/LAM1 Surface Molecules and Markedly Enhances CD2-Mediated T Cell Activation. J. Immunol. 1992, 149, 3809–3816.
  • Hale, L. P.; Greer, P. K.; Sempowski, G. D. Bromelain Treatment Alters Leukocyte Expression of Cell Surface Molecules Involved in Cellular Adhesion and Activation. Clin. Immunol. 2002, 104, 183–190. DOI: 10.1006/clim.2002.5254.
  • Castell, J. V.; Friedrich, G.; Kuhn, C. S.; Poppe, G. E. Intestinal Absorption of Undegraded Proteins in Men: presence of Bromelain in Plasma after Oral Intake. Am. J. Physiol. 1997, 273, G139–G146. DOI: 10.1152/ajpgi.1997.273.1.G139.
  • Hale, L. P.; Greer, P. K.; Trinh, C. T.; James, C. L. Proteinase activity and stability of natural bromelain preparations. Int. Immunopharmacol. 2005, 5, 783–793. DOI: 10.1016/j.intimp.2004.12.007.
  • Morozov, V. N.; Kanev, I. L.; Mikheev, A. Y.; Shlyapnikova, E. A.; Shlyapnikov, Y. M.; Nikitin, M. P.; Nikitin, P. I.; Nwabueze, A. O.; van Hoek, M. L. Generation and Delivery of Nanoaerosols from Biological and Biologically Active Substances. J. Aerosol. Sci. 2014, 69, 48–61. DOI: 10.1016/j.jaerosci.2013.12.003.
  • Martins, V.; Minguillón, M. C.; Moreno, T.; Querol, X.; de, M. E.; Capdevila, M.; Centelles, S.; Lazaridis, M. Deposition of Aerosol Particles from a Subway Microenvironment in the Human Respiratory Tract. J. Aerosol. Sci. 2015, 90, 103–113. DOI: 10.1016/j.jaerosci.2015.08.008.
  • Edwards, D. A.; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M. L.; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R. Large Porous Particles for Pulmonary Drug Delivery. Science. 1997, 276, 1868–1872. DOI: 10.1126/science.276.5320.1868.
  • Ungaro, F.; d'Emmanuele di Villa Bianca, R.; Giovino, C.; Miro, A.; Sorrentino, R.; Quaglia, F.; La Rotonda, M. I. Insulin-Loaded PLGA/Cyclodextrin Large Porous Particles with Improved Aerosolization Properties: In Vivo Deposition and Hypoglycaemic Activity after Delivery to Rat Lungs. J Control Release 2009, 135, 25–34. DOI: 10.1016/j.jconrel.2008.12.011.
  • Fang, X.; Wang, J.; Zhou, H.; Jiang, X.; Zhang, G.; Zhang, D. Multiple Response Optimization of Spray-Drying Process for the Preparation of Salvianolic Acids Microparticles and Evaluation for Potential Application in Dry Powder Inhalation. Dry Technol. 2011, 29, 573–583. DOI: 10.1080/07373937.2010.514691.
  • Agu, R. U.; Ugwoke, M. I.; Armand, M.; Kinget, R.; Verbeke, N. The Lung as a Route for Systemic Delivery of Therapeutic Proteins and Peptides. Respir. Res. 2001, 2, 198–209. DOI: 10.1186/rr58.
  • Bürki, K.; Jeon, I.; Arpagaus, C.; Betz, G. New Insights into Respirable Protein Powder Preparation Using a Nano Spray Dryer. Int. J. Pharm. 2011, 408, 248–256. DOI: 10.1016/j.ijpharm.2011.02.012.
  • Khan, I.; Elhissi, A.; Shah, M.; Alhnan, M. A.; Ahmed, W. Liposome-Based Carrier Systems and Devices Used for Pulmonary Drug Delivery. In Biomaterials and Medical Tribology. Elsevier, 2013; p. 395–443
  • Yu, H.; Tran, T.; Teo, J.; Hadinoto, K. Dry Powder Aerosols of Curcumin-Chitosan Nanoparticle Complex Prepared by Spray-Freeze-Drying and Their Antimicrobial Efficacy against Common Respiratory Bacterial Pathogens. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 504, 34–42. DOI: 10.1016/j.colsurfa.2016.05.053.
  • Ungaro, F.; De Rosa, G.; Miro, A.; Quaglia, F.; La Rotonda, M. I. Cyclodextrins in the Production of Large Porous Particles: development of Dry Powders for the Sustained Release of Insulin to the Lungs. Eur. J. Pharm. Sci. 2006, 28, 423–432. DOI: 10.1016/j.ejps.2006.05.005.
  • Chattopadhyay, P.; Shekunov, B. Y.; Yim, D.; Cipolla, D.; Boyd, B.; Farr, S. Production of Solid Lipid Nanoparticle Suspensions Using Supercritical Fluid Extraction of Emulsions (SFEE) for Pulmonary Delivery Using the AERx System. Adv. Drug Deliv. Rev. 2007, 59, 444–453. DOI: 10.1016/j.addr.2007.04.010.
  • Pasrija, D.; Ezhilarasi, P. N.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of Green Tea Polyphenols and Its Effect on Incorporated Bread Quality. LWT-Food Sci. Technol. 2015, 64, 289–296. DOI: 10.1016/j.lwt.2015.05.054.
  • Vishali, D. A.; Monisha, J.; Sundari, S. S. K.; Moses, J. A.; Anandharamakrishnan, C. Spray-Freeze-Drying: Emerging Applications in Drug Delivery. J. Control Release 2019, 300, 93–101. DOI: 10.1016/j.jconrel.2019.02.044.
  • Ezhilarasi, P. N.; Indrani, D.; Jena, B. S.; Anandharamakrishnan, C. Freeze Drying Technique for Microencapsulation of Garcinia Fruit Extract and Its Effect on Bread Quality. J. Food Eng. 2013, 117, 513–520. DOI: 10.1016/j.jfoodeng.2013.01.009.
  • Leuenberger, H.; Plitzko, M.; Puchkov, M. Spray Freeze Drying in a Fluidized Bed at Normal and Low Pressure. Dry. Technol. 2006, 24, 711–719. DOI: 10.1080/07373930600684932.
  • Dutta, S.; Moses, J. A.; Anandharamakrishnan, C. Modern Frontiers and Applications of Spray-Freeze-Drying in Design of Food and Biological Supplements. J. Food Process Eng. 2018, 41, e12881. DOI: 10.1111/jfpe.12881.
  • Rogers, S.; Wu, W. D.; Saunders, J.; Chen, X. D. Characteristics of Milk Powders Produced by Spray Freeze Drying. Dry. Technol. 2008, 26, 404–412. DOI: 10.1080/07373930801929003.
  • Cao, L.; Xu, Q.; Xing, Y.; Guo, X.; Li, W.; Cai, Y. Effect of Skimmed Milk Powder Concentrations on the Biological Characteristics of Microencapsulated Saccharomyces cerevisiae by Vacuum-Spray-Freeze-Drying. Dry Technol. 2020, 38, 476–494. DOI: 10.1080/07373937.2019.1581797.
  • Zhang, F.; Ma, X.; Wu, X.; Xu, Q.; Tian, W.; Li, Z. Inert Particles as Process Aid in Spray-Freeze Drying. Dry Technol. 2019, 38, 71–79. DOI: 10.1080/07373937.2019.1623246.
  • Ali, M. E.; Lamprecht, A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur. J. Pharm. Biopharm. 2014, 87, 510–517. DOI: 10.1016/j.ejpb.2014.03.009.
  • Koc, B.; Isleroglu, H.; Turker, I. Sorption Behavior and Storage Stability of Microencapsulated Transglutaminase by Ultrasonic Spray–Freeze–Drying. Dry Technol. 2020, DOI: 10.1080/07373937.2020.1793771.
  • Vllasaliu, D.; Casettari, L.; Fowler, R.; Exposito-Harris, R.; Garnett, M.; Illum, L.; Illum, L.; Stolnik, S. Absorption-Promoting Effects of Chitosan in Airway and Intestinal Cell Lines: A Comparative Study. Int. J. Pharm. 2012, 430, 151–160. DOI: 10.1016/j.ijpharm.2012.04.012.
  • Smyth, H. D. C.; Hickey, A. J. Carriers in Drug Powder Delivery. Am. J. Drug Deliv. 2005, 3, 117–132. DOI: 10.2165/00137696-200503020-00004.
  • Crowder, T.; Hickey, A. Powder Specific Active Dispersion for Generation of Pharmaceutical Aerosols. Int. J. Pharm. 2006, 327, 65–72. DOI: 10.1016/j.ijpharm.2006.07.050.
  • Karthik, P.; Anandharamakrishnan, C. Microencapsulation of Docosahexaenoic Acid by Spray-Freeze-Drying Method and Comparison of Its Stability with Spray-Drying and Freeze-Drying Methods. Food Bioprocess Technol. 2013, 6, 2780–2790. DOI: 10.1007/s11947-012-1024-1.
  • Maa, Y.-F.; Nguyen, P.-A.; Sweeney, T.; Shire, S. J. Protein Inhalation Powders : Spray Drying vs Spray-Freeze-Drying. Pharm. Res. 1999, 16, 249–254. DOI: 10.1023/A:1018828425184.
  • Lavanya, M. N.; Kathiravan, T.; Moses, J. A.; Anandharamakrishnan, C. Influence of Spray-Drying Conditions on Microencapsulation of Fish Oil and Chia Oil. Dry Technol. 2019, 38, 279–292. DOI: 10.1080/07373937.2018.1553181.
  • Gorgaslidze, N.; Getia, M. 2018 Development of HPLC Method for Estimation of Bromelain in Gel Formulation. In: International Conference on Analytical Chemistry. Journal of Chemical Technology and Applications.
  • Devakate, R. V.; Patil, V. V.; Waje, S. S.; Thorat, B. N. Purification and Drying of Bromelain. Sep. Purif. Technol. 2009, 64, 259–264. DOI: 10.1016/j.seppur.2008.09.012.
  • Azeem, A. K.; Dilip, C.; Prasanth, S. S.; Shahima, V. J. H.; Sajeev, K.; Naseera, C. Anti–Inflammatory Activity of the Glandular Extracts of Thunnus Alalunga. Asian Pac. J. Trop. Med. 2010, 3, 794–796. DOI: 10.1016/S1995-7645(10)60190-3.
  • Marques, M. R. C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011, 18, 15–28. DOI: 10.14227/DT180311P15.
  • Crowder, T. M.; Rosati, J. A.; Schroeter, J. D.; Hickey, A. J.; Martonen, T. B. Fundamental Effects of Particle Morphology on Lung Delivery: predictions of Stokes’ Law and the Particular Relevance to Dry Powder Inhaler Formulation and Development. Pharm. Res. 2002, 19, 239–245. DOI: 10.1023/A:1014426530935.
  • Hickey, A. J.; Edwards, D. A. Density and Shape Factor Terms in Stokes' Equation for Aerodynamic Behavior of Aerosols. J. Pharm. Sci. 2018, 107, 794–796. DOI: 10.1016/j.xphs.2017.11.005.
  • Mohammed, H.; Roberts, D. L.; Copley, M.; Hammond, M.; Nichols, S. C.; Mitchell, J. P. Effect of Sampling Volume on Dry Powder Inhaler (DPI)-Emitted Aerosol Aerodynamic Particle Size Distributions (APSDs) Measured by the Next-Generation Pharmaceutical Impactor (NGI) and the Andersen Eight-Stage Cascade Impactor (ACI). Aaps Pharmscitech. 2012, 13, 875–882. DOI: 10.1208/s12249-012-9797-0.
  • Arepally, D.; Goswami, T. K. Effect of Inlet Air Temperature and Gum Arabic Concentration on Encapsulation of Probiotics by Spray Drying. Lwt 2019, 99, 583–593. DOI: 10.1016/j.lwt.2018.10.022.
  • Koç, M.; Koç, B.; Yilmazer, M. S.; Ertekin, F. K.; Susyal, G.; Bağdatlıoğlu, N. Physicochemical Characterization of Whole Egg Powder Microencapsulated by Spray Drying. Dry Technol. 2011, 29, 780–788. DOI: 10.1080/07373937.2010.538820.
  • Lavanya, M. N.; Dutta, S.; Moses, J. A.; Chinnaswamy, A. Development of $β$-Carotene Aerosol Formulations Using a Modified Spray Dryer. J. Food Process Eng. 2020, 43, e13233. DOI: 10.1111/jfpe.13233.
  • Sonner, C.; Maa, Y.-F.; Lee, G. Spray-Freeze-Drying for Protein Powder Preparation: Particle Characterization and a Case Study with Trypsinogen Stability. J. Pharm. Sci. 2002, 91, 2122–2139. DOI: 10.1002/jps.10204.
  • Patil-Gadhe, A.; Kyadarkunte, A.; Patole, M.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance . Eur. J. Pharm. Biopharm. 2014, 88, 169–177. DOI: 10.1016/j.ejpb.2014.07.007.
  • Steckel, H.; Brandes, H. G. A Novel Spray-Drying Technique to Produce Low Density Particles for Pulmonary Delivery. Int. J. Pharm. 2004, 278, 187–195. DOI: 10.1016/j.ijpharm.2004.03.010.
  • Telko, M. J.; Hickey, A. J. Dry Powder Inhaler Formulation. Respir. Care. 2005, 50, 1209–1227. Respiratory Care:
  • Mönckedieck, M.; Kamplade, J.; Fakner, P.; Urbanetz, N. A.; Walzel, P.; Steckel, H.; Scherließ, R. Spray Drying of Mannitol Carrier Particles with Defined Morphology and Flow Characteristics for Dry Powder Inhalation. Dry Technol. 2017, 35, 1843–1857. DOI: 10.1080/07373937.2017.1281291.
  • Ishwarya, S. P.; Anandharamakrishnan, C.; Stapley, A. G. F. Spray-Freeze-Drying: A Novel Process for the Drying of Foods and Bioproducts. Trends Food Sci. Technol. 2015, 41, 161–181. DOI: 10.1016/j.tifs.2014.10.008.
  • Mueannoom, W.; Srisongphan, A.; Taylor, K. M. G.; Hauschild, S.; Gaisford, S. Thermal Ink-Jet Spray-Freeze-Drying for Preparation of Excipient-Free Salbutamol Sulphate for Inhalation. Eur. J. Pharm. Biopharm. 2012, 80, 149–155. DOI: 10.1016/j.ejpb.2011.09.016.
  • Tan, S.; Ebrahimi, A.; Liu, X.; Langrish, T. Role of Templating Agents in the Spray Drying and Postcrystallization of Lactose for the Production of Highly Porous Powders. Dry Technol. 2018, 36, 1882–1891. DOI: 10.1080/07373937.2018.1445096.
  • Liang, W.; Chan, A. Y. L.; Chow, M. Y. T.; Lo, F. F. K.; Qiu, Y.; Kwok, P. C. L.; and.; Lam, J. K. W. Spray freeze drying of small nucleic acids as inhaled powder for pulmonary delivery. Asian J. Pharm. Sci. 2018, 13, 163–172. Available from: . DOI: 10.1016/j.ajps.2017.10.002.
  • Okuda, T.; Morishita, M.; Mizutani, K.; Shibayama, A.; Okazaki, M.; Okamoto, H. Development of Spray-Freeze-Dried siRNA/PEI Powder for Inhalation with High Aerosol Performance and Strong Pulmonary Gene Silencing Activity. J Control Release 2018, 279, 99–113. DOI: 10.1016/j.jconrel.2018.04.003.
  • Pouya, M. A.; Daneshmand, B.; Aghababaie, S.; Faghihi, H.; Vatanara, A. Spray-Freeze-Drying: A Suitable Method for Aerosol Delivery of Antibodies in the Presence of Trehalose and Cyclodextrins. Aaps Pharmscitech. 2018, 19, 2247–2254. DOI: 10.1208/s12249-018-1023-2.
  • Taussig, S. J.; Batkin, S. Bromelain, the Enzyme Complex of Pineapple (Ananas Comosus) and Its Clinical Application. An Update. J. Ethnopharmacol. 1988, 22, 191–203. DOI: 10.1016/0378-8741(88)90127-4.
  • Mahalakshmi, L.; Leena, M. M.; Moses, J. A.; Anandharamakrishnan, C. Micro- and nano-encapsulation of β-carotene in zein protein: size-dependent release and absorption behavior. Food Funct. 2020, 11, 1647–1660. DOI: 10.1039/c9fo02088h.
  • Chen, L. Protein Micro/Nanoparticles for Controlled Nutraceutical Delivery in Functional Foods. In Designing Functional Foods. Elsevier: UK, 2009, 572–600. DOI: 10.1533/9781845696603.3.572.
  • Longest, P. W.; Vinchurkar, S. Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models with Comparisons to Experimental Data. Med. Eng. Phys. 2007, 29, 350–366. DOI: 10.1016/j.medengphy.2006.05.012.
  • Williams, R. O.; Carvalho, T. C.; Peters, J. I. Influence of Particle Size on Regional Lung deposition - What Evidence is There?. Int. J. Pharmaceutics. 2011, 406, 1–10. DOI: 10.1016/j.ijpharm.2010.12.040.
  • Xie, Y.; Zeng, P.; Siegel, R. A.; Wiedmann, T. S.; Hammer, B. E.; Longest, P. W. Magnetic Deposition of Aerosols Composed of Aggregated Superparamagnetic Nanoparticles. Pharm. Res. 2010, 27, 855–865. DOI: 10.1007/s11095-010-0078-x.
  • Tena, A. F.; Clarà, P. C. Deposition of Inhaled Particles in the Lungs. Arch. Bronconeumol. 2012, 48, 240–246.
  • Hofmann, W. Modelling Inhaled Particle Deposition in the Human Lung-a Review. J. Aerosol. Sci. 2011, 42, 693–724. DOI: 10.1016/j.jaerosci.2011.05.007.
  • Nahar, K.; Gupta, N.; Gauvin, R.; Absar, S.; Patel, B.; Gupta, V.; Khademhosseini, A.; Ahsan, F. In Vitro, in Vivo and Ex Vivo Models for Studying Particle Deposition and Drug Absorption of Inhaled Pharmaceuticals. Eur. J. Pharm. Sci. 2013, 49, 805–818. DOI: 10.1016/j.ejps.2013.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.