379
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impact of advanced extraction technologies and characterization of freeze-dried brown seaweed polysaccharides

, , &
Pages 371-382 | Received 31 Mar 2020, Accepted 11 Oct 2020, Published online: 10 Nov 2020

References

  • Uribe, E.; Vega-Gálvez, A.; García, V.; Pastén, A.; Rodríguez, K.; López, J.; Scala, K. D. Evaluation of Physicochemical Composition and Bioactivity of a Red Seaweed (Pyropia orbicularis) as Affected by Different Drying Technologies. Drying Technol. 2020, 38, 1218–1230. DOI: 10.1080/07373937.2019.1628771.
  • Lafarga, T.; Acién-Fernández, F. G.; Garcia-Vaquero, M. Bioactive Peptides and Carbohydrates from Seaweed for Food Applications: Natural Occurrence, Isolation, Purification, and Identification. Algal Res. 2020, 48, 101909. DOI: 10.1016/j.algal.2020.101909.
  • Praveen, M. A.; Parvathy, K. K.; Balasubramanian, P.; Jayabalan, R. An Overview of Extraction and Purification Techniques of Seaweed Dietary Fibers for Immunomodulation on Gut Microbiota. Trends Food Sci. Technol. 2019, 92, 46–64. DOI: 10.1016/j.tifs.2019.08.011.
  • Whisner, C. M.; Castillo, L. F. Prebiotics, Bone and Mineral Metabolism. Calcif. Tissue Int. 2018, 102, 443–479. DOI: 10.1007/s00223-017-0339-3
  • de Jesus Raposo, M. F.; De Morais, A. M. M. B.; De Morais, R. M. S. C. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar. Drugs 2016, 14, 27. DOI: 10.3390/md14020027.
  • Kadam, S. U.; Tiwari, B. K.; Smyth, T. J.; O'Donnell, C. P. Optimization of Ultrasound Assisted Extraction of Bioactive Components from Brown Seaweed Ascophyllum Nodosum Using Response Surface Methodology. Ultrason. Sonochem. 2015, 23, 308–316. DOI: 10.1016/j.ultsonch.2014.10.007
  • Zhang, H.; Row, K. H. Extraction and Separation of Polysaccharides from Laminaria Japonica by Size-Exclusion Chromatography. J. Chromatogr. Sci. 2015, 53, 498–502. DOI: 10.1093/chromsci/bmu073
  • Hahn, T.; Lang, S.; Ulber, R.; Muffler, K. Novel Procedures for the Extraction of Fucoidan from Brown Algae. Process Biochem. 2012, 47, 1691–1698. DOI: 10.1016/j.procbio.2012.06.016.
  • Yuan, Y.; Macquarrie, D. Microwave Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Ascophyllum nodosum and Its Antioxidant Activity. Carbohydr. Polym. 2015, 129, 101–107. DOI: 10.1016/j.carbpol.2015.04.057
  • Okolie, C. L.; C. K. Rajendran, S. R.; Udenigwe, C. C.; Aryee, A. N. A.; Mason, B. Prospects of Brown Seaweed Polysaccharides (BSP) as Prebiotics and Potential Immunomodulators. J. Food Biochem. 2017, 41, e12392. DOI: 10.1111/jfbc.12392.
  • Wijesinghe, W. A. J. P.; Jeon, Y. J. Enzyme-Assistant Extraction (EAE) of Bioactive Components: A Useful Approach for Recovery of Industrially Important Metabolites from Seaweeds: A Review. Fitoterapia 2012, 83, 6–12. DOI: 10.1016/j.fitote.2011.10.016
  • Deniaud-Bouët, E.; Kervarec, N.; Michel, G.; Tonon, T.; Kloareg, B.; Hervé, C. Chemical and Enzymatic Fractionation of Cell Walls from Fucales: insights into the Structure of the Extracellular Matrix of Brown Algae. Ann. Bot. 2014, 114, 1203–1216. DOI: 10.1093/aob/mcu096
  • Charoensiddhi, S.; Franco, C.; Su, P.; Zhang, W. Improved Antioxidant Activities of Brown Seaweed Ecklonia radiata Extracts Prepared by Microwave-Assisted Enzymatic Extraction. J. Appl. Phycol. 2015, 27, 2049–2058. DOI: 10.1007/s10811-014-0476-2.
  • Garcia-Vaquero, M.; Rajauria, G.; O'doherty, J. V.; Sweeney, T. Polysaccharides from Macroalgae: Recent Advances, Innovative Technologies and Challenges in Extraction and Purification. Food Res. Int. 2017, 99, 1011–1020. DOI: 10.1016/j.foodres.2016.11.016
  • Charoensiddhi, S.; Conlon, M. A.; Franco, C. M.; Zhang, W. The Development of Seaweed-Derived Bioactive Compounds for Use as Prebiotics and Nutraceuticals Using Enzyme Technologies. Trends Food Sci. Technol. 2017, 70, 20–33. DOI: 10.1016/j.tifs.2017.10.002.
  • Sablani, S. S.; Andrews, P. K.; Davies, N. M.; Walters, T.; Saez, H.; Bastarrachea, L. Effects of Air and Freeze Drying on Phytochemical Content of Conventional and Organic Berries. Drying Technol. 2011, 29, 205–216. DOI: 10.1080/07373937.2010.483047.
  • Seifter, S.; Dayton, S.; Novic, B.; Muntwyler, E. The Estimation of Glycogen with the Anthrone Reagent. Arch. Biochem. Biophys. 1950, 25, 191–200.
  • Lee, S. C.; Prosky, L.; Vries, J. W. D. Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer: Collaborative Study. J. AOAC Int. 1992, 75, 395–416. DOI: 10.1093/jaoac/75.3.395.
  • Uribe, E.; Pardo-Orellana, C. M.; Vega-Gálvez, A.; Ah-Hen, K. S.; Pastén, A.; García, V.; Aubourg, S. P. Effect of Drying Methods on Bioactive Compounds, Nutritional, Antioxidant, and Antidiabetic Potential of Brown Alga Durvillaea antarctica. Drying Technol. 2020, 38, 1915–1928. DOI: 10.1080/07373937.2019.1679830.
  • Moumita, S.; Das, B.; Hasan, U.; Jayabalan, R. Effect of Long-Term Storage on Viability and Acceptability of Lyophilized and Spray-Dried Synbiotic Microcapsules in Dry Functional Food Formulations. LWT 2018, 96, 127–132. DOI: 10.1016/j.lwt.2018.05.030.
  • Fan, Y.; Wu, X.; Zhang, M.; Zhao, T.; Zhou, Y.; Han, L.; Yang, L. Physical Characteristics and Antioxidant Effect of Polysaccharides Extracted by Boiling Water and Enzymolysis from Grifola frondosa. Int. J. Biol. Macromol. 2011, 48, 798–803. DOI: 10.1016/j.ijbiomac.2011.03.013
  • Yıldırım, A.; Mavi, A.; Kara, A. A. Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. extracts. J. Agric. Food Chem. 2001, 49, 4083–4089. DOI: 10.1021/jf0103572.
  • Waterhouse, A. L. Determination of Total Phenolics. CPFAC. John Wiley & Sons, Inc. USA 2002, 6, I1-1.
  • Chang, C. C.; Yang, M. H.; Wen, H. M.; Chern, J. C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. DOI: 10.38212/2224-6614.2748.
  • Paesani, C.; Degano, A. L.; Salvucci, E.; Zalosnik, M. I.; Fabi, J. P.; Sciarini, L.; Perez, G. T. Soluble Arabinoxylans Extracted from Soft and Hard Wheat Show a Differential Prebiotic Effect in Vitro and in Vivo. J. Cereal Sci. 2020, 93, 102956. DOI: 10.1016/j.jcs.2020.102956.
  • Anprung, P.; Sangthawan, S. Prebiotic Activity and Bioactive Compounds of the Enzymatically Depolymerized Thailand-Grown Mangosteen Aril. J. Food Res. 2012, 1, 268–276. DOI: 10.5539/jfr.v1n1p268.
  • Praveen, M. A.; Parvathy, K. K.; Jayabalan, R.; Balasubramanian, P. Dietary Fiber from Indian Edible Seaweeds and Its In-Vitro Prebiotic Effect on the Gut Microbiota. Food Hydrocoll. 2019, 96, 343–353. DOI: 10.1016/j.foodhyd.2019.05.031.
  • He, R.; Zhao, Y.; Zhao, R.; Sun, P. Antioxidant and Antitumor Activities In Vitro of Polysaccharides from E. sipunculoides. Int. J. Biol. Macromol. 2015, 78, 56–61. DOI: 10.1016/j.ijbiomac.2015.03.030
  • Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. DOI: 10.1016/j.foodhyd.2011.02.009.
  • Ktari, N.; Feki, A.; Trabelsi, I.; Triki, M.; Maalej, H.; Slima, S. B.; Nasri, M.; Amara, I. B.; Salah, R. B. Structure, Functional and Antioxidant Properties in Tunisian Beef Sausage of a Novel Polysaccharide from Trigonella foenum-graecum Seeds. Int. J. Biol. 2017, 98, 169–181. DOI: 10.1016/j.ijbiomac.2017.01.113.
  • Kumar, S. Potential of Sargassum wightii and Gracilaria verrucosa Two Important Seaweeds as Source of Food and Fuel through Biorefinery Approach. Ph.D. dissertation, University of Delhi, New Delhi, India, 2013.
  • Zubia, M.; Payri, C. E.; Deslandes, E.; Guezennec, J. Chemical Composition of Attached and Drift Specimens of Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales) from Tahiti, French Polynesia. Bot. Marina 2003, 46, 562–571. DOI: 10.1515/BOT.2003.059.
  • Manivannan, K.; Thirumaran, G.; Devi, G. K.; Hemalatha, A.; Anantharaman, P. Biochemical Composition of Seaweeds from Mandapam Coastal Regions along Southeast Coast of India. Am. Euras. J. Bot. 2008, 1, 32–37.
  • Murakami, K.; Yamaguchi, Y.; Noda, K.; Fujii, T.; Shinohara, N.; Ushirokawa, T.; Sugawa-Katayama, Y.; Katayama, M. Seasonal Variation in the Chemical Composition of a Marine Brown Alga, Sargassum horneri (Turner) C. Agardh. J. Food Compos. Anal. 2011, 24, 231–236. DOI: 10.1016/j.jfca.2010.08.004.
  • Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J. R. Chemical Compositions of the Marine Algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a Potential Food Source. J. Sci. Food Agric. 2012, 92, 2500–2506. DOI: 10.1002/jsfa.5659
  • Holdt, S. L.; Kraan, S. Bioactive Compounds in Seaweed: functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. DOI: 10.1007/s10811-010-9632-5.
  • Rupérez, P.; Ahrazem, O.; Leal, J. A. Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown Seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. DOI: 10.1021/jf010908o.
  • Okolie, C. The Structure-Function Relationship between Ascophyllum nodosum Polysaccharides and In Vitro Prebiotic Activity: An Assessment of the Impact of Extraction Technologies. Ph.D. dissertation, Dalhousie University, Nova Scotia, Canada, 2018.
  • Fertah, M.; Belfkira, A.; Dahmane, E. m.; Taourirte, M.; Brouillette, F. Extraction and Characterization of Sodium Alginate from Moroccan Laminaria digitata Brown Seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. DOI: 10.1016/j.arabjc.2014.05.003.
  • Rioux, L. E.; Turgeon, S. L.; Beaulieu, M. Characterization of Polysaccharides Extracted from Brown Seaweeds. Carbohydr. Polym. 2007, 69, 530–537. DOI: 10.1016/j.carbpol.2007.01.009.
  • Maneesh, A.; Chakraborty, K.; Makkar, F. Pharmacological Activities of Brown Seaweed Sargassum wightii (Family Sargassaceae) Using Different in Vitro Models. Int. J. Food Prop. 2017, 20, 931–945. DOI: 10.1080/10942912.2016.1189434.
  • Huebner, J.; Wehling, R. L.; Hutkins, R. W. Functional Activity of Commercial Prebiotics. Int. Dairy J. 2007, 17, 770–775. DOI: 10.1016/j.idairyj.2006.10.006.
  • Barrangou, R.; Altermann, E.; Hutkins, R.; Cano, R.; Klaenhammer, T. R. Functional and Comparative Genomic Analyses of an Operon Involved in Fructooligosaccharide Utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. USA. 2003, 100, 8957–8962. DOI: 10.1073/pnas.1332765100
  • Ballesteros, L. F.; Ramirez, M. J.; Orrego, C. E.; Teixeira, J. A.; Mussatto, S. I. Encapsulation of Antioxidant Phenolic Compounds Extracted from Spent Coffee Grounds by Freeze-Drying and Spray-Drying Using Different Coating Materials. Food Chem. 2017, 237, 623–631. DOI: 10.1016/j.foodchem.2017.05.142
  • Zhao, J.; Cheung, P. C. Fermentation of β-Glucans Derived from Different Sources by Bifidobacteria: Evaluation of Their Bifidogenic Effect. J. Agric. Food Chem. 2011, 59, 5986–5992. DOI: 10.1021/jf200621y
  • Sheeba, J. M.; Thambidurai, S. Extraction, Characterization, and Application of Seaweed Nanoparticles on Cotton Fabrics. J. Appl. Polym. Sci. 2009, 113, 2287–2292. DOI: 10.1002/app.30207.
  • Synytsya, A.; Kim, W. J.; Kim, S. M.; Pohl, R.; Synytsya, A.; Kvasnička, F.; Čopíková, J.; Park, Y. I. Structure and Antitumour Activity of Fucoidan Isolated from Sporophyll of Korean Brown Seaweed Undaria pinnatifida. Carbohydr. Polym. 2010, 81, 41–48. DOI: 10.1016/j.carbpol.2010.01.052.
  • Flórez-Fernández, N.; Domínguez, H.; Torres, M. D. A Green Approach for Alginate Extraction from Sargassum muticum Brown Seaweed Using Ultrasound-Assisted Technique. Int. J. Biol. Macromol. 2019, 124, 451–459. DOI: 10.1016/j.ijbiomac.2018.11.232
  • Rhein-Knudsen, N.; Ale, M. T.; Ajalloueian, F.; Meyer, A. S. Characterization of Alginates from Ghanaian Brown Seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll. 2017, 71, 236–244. DOI: 10.1016/j.foodhyd.2017.05.016.
  • Rostami, Z.; Tabarsa, M.; You, S.; Rezaei, M. Relationship between Molecular Weights and Biological Properties of Alginates Extracted under Different Methods from Colpomenia peregrina. Process Biochem. 2017, 58, 289–297. DOI: 10.1016/j.procbio.2017.04.037.
  • Date, Y.; Sakata, K.; Kikuchi, J. Chemical Profiling of Complex Biochemical Mixtures from Various Seaweeds. Polym. J. 2012, 44, 888–894. DOI: 10.1038/pj.2012.105.
  • Praveen, M. A.; Parvathy, K. K.; Patra, S.; Khan, I.; Natarajan, P.; Balasubramanian, P. Cytotoxic and Pharmacokinetic Studies of Indian Seaweed Polysaccharides for Formulating Raindrop Synbiotic Candy. Int. J. Biol. Macromol. 2020, 154, 557–566. doi: 10.1016/j.ijbiomac.2020.03.086
  • Choi, J. W.; Lee, J.; Kim, S. C.; You, S.; Lee, C. W.; Shin, J.; Park, Y. I. Glucuronorhamnoxylan from Capsosiphon fulvescens Inhibits the Growth of HT-29 Human Colon Cancer Cells In Vitro and In Vivo via Induction of Apoptotic Cell Death. Int. J. Biol. Macromol. 2019, 124, 1060–1068. DOI: 10.1016/j.ijbiomac.2018.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.