734
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Superheated steam drying and its applicability for various types of the dryer: The state of art

ORCID Icon & ORCID Icon
Pages 284-305 | Received 12 May 2020, Accepted 03 Nov 2020, Published online: 26 Nov 2020

References

  • Mujumdar, A. S. Introduction, Classification and Selection of Dryers. In Handbook of Industrial Drying; CRC Press : Taylor & Francis Group: New York, 2015; pp 25–55.
  • Li, Y. B.; Seyed-Yagoobi, J.; Moreira, R. G.; Yamsaengsung, R. Superheated Steam Impingement Drying of Tortilla Chips. Dry. Technol. 1999, 17, 191–213.
  • Van Deventer, H. C.; Heijmans, R. M. H. Drying with Superheated Steam. Dry. Technol. 2001, 19, 2033–2045. DOI: 10.1081/DRT-100107287.
  • Romdhana, H.; Bonazzi, C.; Esteban-Decloux, M. Superheated Steam Drying: An Overview of Pilot and Industrial Dryers with a Focus on Energy Efficiency. Dry. Technol. 2015, 33, 1255–1274. DOI: 10.1080/07373937.2015.1025139.
  • Mujumdar, A. S. Superheated Steam Drying. In Handbook of Industrial Drying; Mujumdar, A.S., Ed., CRC Press,  Taylor & Francis Group: Boca Raton, Florida, 2014; pp 421–432.
  • Sehrawat, R.; Nema, P. K.; Kaur, B. P. Effect of Superheated Steam Drying on Properties of Foodstuffs and Kinetic Modeling. Innov. Food Sci. Emerg. Technol. 2016, 34, 285–301. DOI: 10.1016/j.ifset.2016.02.003.
  • Li, J.; Liang, Q.-C.; Bennamoun, L. Superheated Steam Drying: Design Aspects, Energetic Performances, and Mathematical Modeling. Renew. Sustain. Energy Rev. 2016, 60, 1562–1583. DOI: 10.1016/j.rser.2016.03.033.
  • Devahastin, S.; Suvarnakuta, P.; Soponronnarit, S.; Mujumdar, A. S. A Comparative Study of Low-Pressure Superheated Steam and Vacuum Drying of a Heat-Sensitive Material. Dry. Technol. 2004, 22, 1845–1867.
  • Costa, V. A. F.; Silva Neto da, F. On the Rate of Evaporation of Water into a Stream of Dry Air, Humidified Air and Superheated Steam, and the Inversion Temperature. Int. J. Heat Mass Transf. 2003, 46, 3717–3726. DOI: 10.1016/S0017-9310. (03)00174-1.
  • Devahastin, S.; Mujumdar, A. S. Superheated Steam Drying of Foods and Biomaterials. In Modern Drying Technology; Tsotsas, E., Mujumdar, A. S. Eds.; 2014; Vol. 5, pp 57–84. Wiley-VCH: Weinheim, Germany. DOI: 10.1002/9783527631704.ch03.
  • Kozanoglu, B.; Mazariegos, D.; Guerrero-Beltrán, J. A.; Welti-Chanes, J. Drying Kinetics of Paddy in a Reduced Pressure Superheated Steam Fluidized Bed. Dry. Technol. 2013, 31, 452–461. DOI: 10.1080/07373937.2012.740543.
  • Nathakaranakule, A.; Kraiwanichkul, W.; Soponronnarit, S. Comparative Study of Different Combined Superheated Steam Drying Techniques for Chicken Meat. J. Food Eng. 2007, 80, 1023–1030. DOI: 10.1016/j.jfoodeng.2006.04.067.
  • Pronyk, C.; Cenkowski, S.; Muir, W. E. Drying Kinetics of Instant Asian Noodles Processed in Superheated Steam. Dry. Technol. 2010, 28, 304–314. DOI: 10.1080/07373930903534545.
  • Bourassa, J.; Ramachandran, R. P.; Paliwal, J.; Cenkowski, S. Drying Characteristics and Moisture Diffusivity of Distillers Spent Grains Dried in Superheated Steam. Dry. Technol. 2015, 33, 2012–2018. DOI: 10.1080/07373937.2015.1040883.
  • Pronyk, C.; Cenkowski, S.; Muir, W. E. Drying Foodstuffs with Superheated Steam. Dry. Technol. 2004, 22, 899–916. DOI: 10.1081/DRT-120038571.
  • Pothmann, E.; Schliinder, E. U. Steam Drying of Products Containing Solvent Mixtures. Dry. Technol. 1995, 13, 1695–1711. DOI: 10.1080/07373939508917047.
  • Moreira, R. G. Impingement Drying of Foods Using Hot Air and Superheated Steam. J. Food Eng. 2001, 49, 291–295.
  • Iyota, H.; Nishimura, N.; Yoshida, M.; Nomura, T. Simulation of Superheated Steam Drying Considering Initial Steam Condensation. Dry. Technol. 2001, 19, 1425–1440. DOI: 10.1081/DRT-100105298.
  • Pakowski, Z.; Adamski, R. On Prediction of the Drying Rate in Superheated Steam Drying Process. Dry. Technol. 2011, 29, 1492–1498. DOI: 10.1080/07373937.2011.576320.
  • Cenkowski, S.; Sosa-Morales, M. E.; Flores-Alvarez, M. D. C. Protein Content and Antioxidant Activity of Distillers’ Spent Grain Dried at 150 °C with Superheated Steam and Hot Air. Dry. Technol. 2012, 30, 1292–1296. DOI: 10.1080/07373937.2012.686948.
  • Johnson, P.; Cenkowski, S.; Paliwal, J. Analysis of the Disintegration of Distiller’s Spent Grain Compacts as Affected by Drying in Superheated Steam. Dry. Technol. 2014, 32, 1060–1070. DOI: 10.1080/07373937.2014.881849.
  • Elustondo, D.; Ahmed, S.; Oliveira, L. Drying Western Red Cedar with Superheated Steam. Dry. Technol. 2014, 32, 550–556. DOI: 10.1080/07373937.2013.843190.
  • Aziz, M.; Oda, T.; Kashiwagi, T. Innovative Steam Drying of Empty Fruit Bunch with High Energy Efficiency. Dry. Technol. 2015, 33, 395–405. DOI: 10.1080/07373937.2014.970257.
  • Liu, J.; Zang, L.; Xu, Q.; Wang, R.; Li, Z. Drying of Soy Sauce Residue in Superheated Steam at Atmospheric Pressure. Dry. Technol. 2017, 35, 1655–1662. DOI: 10.1080/07373937.2016.1273232.
  • Soponronnarit, S.; Prachayawarakorn, S.; Rordprapat, W.; Nathakaranakule, A.; Tia, W. A Superheated-Steam Fluidized-Bed Dryer for Parboiled Rice: Testing of a Pilot Scale and Mathematical Model Development. Dry. Technol. 2006, 24, 1457–1467.
  • Hampel, N.; Le, K. H.; Kharaghani, A.; Tsotsas, E. Continuous Modeling of Superheated Steam Drying of Single Rice Grains. Dry. Technol. 2019, 37, 1583–1596.
  • Kozanoglu, B.; Vazquez, A. C.; Chanes, J. W.; Patiño, J. L. Drying of Seeds in a Superheated Steam Vacuum Fluidized Bed. J. Food Eng. 2006, 75, 383–387.
  • Law, C. L.; Mujumdar, A. S. Fluidized Bed Dryers. In Handbook of Industrial Drying; Mujumdar, A. S., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, Florida, 2014; pp 161–186.
  • Tatemoto, Y.; Yano, S.; Takeshita, T.; Noda, K.; Komatsu, N. Effect of Fluidizing Particle on Drying Characteristics of Porous Materials in Superheated Steam Fluidized Bed under Reduced Pressure. Dry. Technol. 2008, 26, 168–175. DOI: 10.1080/07373930701831267.
  • Chen, Z.; Wu, W.; Agarwal, P. K. Steam-Drying of Coal. Part 1. Modeling the Behavior of a Single Particle. Fuel 2000, 79, 961–974. DOI: 10.1016/S0016-2361. (99)00217-3.
  • Taechapairoj, C.; Dhuchakallaya, I.; Soponronnarit, S.; Wetchacama, S.; Prachayawarakorn, S. Superheated Steam Fluidized Bed Paddy Drying. J. Food Eng. 2003, 58, 67–73.
  • Rordprapat, W.; Nathakaranakule, A.; Tia, W.; Soponronnarit, S. Comparative Study of Fluidized Bed Paddy Drying Using Hot Air and Superheated Steam. J. Food Eng. 2005, 71, 28–36.
  • Prachayawarakorn, S.; Prachayawasin, P.; Soponronnarit, S. Heating Process of Soybean Using Hot-Air and Superheated-Steam Fluidized-Bed Dryers. LWT - Food Sci. Technol. 2006, 39, 770–778. DOI: 10.1016/j.lwt.2005.05.013.
  • Liu, Y.; Ohara, H. Lignite Drying in a Bench-Scale Pulsation-Assisted Fluidized Bed Dryer. Dry. Technol. 2020, 38, 1698–1708. DOI: 10.1080/07373937.2019.1655438.
  • Chen, Z.; Agarwal, P. K.; Agnew, J. B. Steam Drying of Coal. Part 2. Modeling the Operation of a Fluidized Bed Drying Unit. Fuel 2001, 80, 209–223.
  • Arima, K.; Tsuchiyama, Y.; Sawatsubashi, T.; Kinoshita, M.; Ishii, H. Drying of Wet Brown Coal Particles by a Steam-Fluidized Bed Dryer. Dry. Technol. 2018, 36, 664–672. DOI: 10.1080/07373937.2017.1323337.
  • Pang, S.; Dakin, M. Drying Rate and Temperature Profile for Superheated Steam Vacuum Drying and Moist Air Drying of Softwood Lumber. Dry. Technol. 1999, 17, 1135–1147.
  • Nimmol, C.; Devahastin, S.; Swasdisevi, T.; Soponronnarit, S. Drying and Heat Transfer Behavior of Banana Unergoing Combined Low-Pressure Superheated Steam and Far-Infrared Radiation Drying. Appl. Therm. Eng. 2007, 27, 2483–2494. DOI: 10.1016/j.applthermaleng.2007.02.003.
  • Yamsaengsung, R.; Sattho, T. Superheated Steam Vacuum Drying of Rubberwood. Dry. Technol. 2008, 26, 798–805.
  • Messai, S.; Sghaier, J.; Chrusciel, L.; El Ganaoui, M.; Gabsi, S. Low-Pressure Superheated Steam Drying—Vacuum Drying of a Porous Media and the Inversion Temperature. Dry. Technol. 2015, 33, 111–119. DOI: 10.1080/07373937.2014.933844.
  • Suryanto, S.; Hamzah, N.; Taufik, A. The Novel Vacuum Drying Using the Steam Ejector. Dry. Technol. DOI: 10.1080/07373937.2020.1728307.
  • Thomkapanich, O.; Suvarnakuta, P.; Devahastin, S. Study of Intermittent Low-Pressure Superheated Steam and Vacuum Drying of a Heat-Sensitive Material. Dry. Technol. 2007, 25, 205–223.
  • Krokida, M.; Marinos-Kouris, D.; Mujumdar, A. S. Rotary Drying. In Handbook of Industrial Drying; CRC Press : Taylor & Francis Group: Boca Raton; London; New York, 2014; pp 139–158.
  • Canales, E. R.; Borquez, R. M.; Melo, D. L. Steady State Modelling and Simulation of an Indirect Rotary Dryer. Food Control 2001, 12, 77–83.
  • Elustondo, D. M.; Mujumdar, A. S.; Urbicain, M. J. Optimum Operating Conditions in Drying Foodstuffs with Superheated Steam. Dry. Technol. 2002, 20, 381–402.
  • Stroem, L. K.; Desai, D. K.; Hoadley, A. F. A. Superheated Steam Drying of Brewer’s Spent Grain in a Rotary Drum. Adv. Powder Technol. 2009, 20, 240–244.
  • Speckhahn, A.; Srzednicki, G.; Desai, D. K. Drying of Beef in Superheated Steam. Dry. Technol. 2010, 28, 1073–1082. DOI: 10.1080/07373937.2010.505547.
  • Chryat, Y.; Esteban-Decloux, M.; Labarde, C.; Romdhana, H. A Concept and Industrial Testing of a Superheated Steam Rotary Dryer Demonstrator: Cocurrent-Triple Pass Design. Dry. Technol. 2019, 37, 468–474.
  • Borde, I.; Levy, A. Pneumatic and Flash Drying. In Handbook of Industrial Drying; Mujumdar, A. S., Ed.; CRC Press : Taylor & Francis Group: Boca Raton, 2014; pp 381–391.
  • Fyhr, C.; Rasmuson, A. Steam Drying of Wood Chips in Pneumatic Conveying Dryers. Dry. Technol. 1997, 15, 1775–1785.
  • Blasco, R.; Alvarez, P. I. Flash Drying of Fish Meals with Superheated Steam: Isothermal Process. Dry. Technol. 1999, 17, 775–790.
  • Pakowski, Z.; Druzdzel, A.; Drwiega, J. Validation of a Model of an Expanding Superheated Steam Flash Dryer for Cut Tobacco Based on Processing Data. Dry. Technol. 2004, 22, 45–57.
  • Banooni, S.; Hajidavalloo, E.; Dorfeshan, M. A Comprehensive Review on Modeling of Pneumatic and Flash Drying. Dry. Technol. 2018, 36, 33–51.
  • Mujumdar, A. S. Impingement Drying. In Handbook of Industrial Drying; Mujumdar, A. S., Ed.; CRC Press,  Taylor & Francis Group, Boca Raton, Florida, 2014; pp 371–379.
  • Bond, J. F.; Crotogino, R. H.; Heiningen, V. A. R. P.; Douglas, W. J. M. An Experimental Study of the Falling Rate Period of Superheated Steam Impingement Drying of Paper. Dry. Technol. 1992, 10, 961–977.
  • Borquez, R. M.; Canales, E. R.; Quezada, H. R. Drying of Fish Press-Cake with Superheated Steam in a Pilot Plant Impingement System. Dry. Technol. 2008, 26, 290–298. DOI: 10.1080/07373930801897986.
  • Gómez, J. E.; Melo, D. L.; Bórquez, R. M.; Canales, E. R. Computational Study of Impingement Jet Drying of Seeds Using Superheated Steam Based on Kinetic Theory of Granular Flow. Dry. Technol. 2009, 27, 1171–1182. DOI: 10.1080/07373930903262998.
  • Choicharoen, K.; Devahastin, S.; Soponronnarit, S. Comparative Evaluation of Performance and Energy Consumption of Hot Air and Superheated Steam Impinging Stream Dryers for High-Moisture Particulate Materials. Appl. Therm. Eng. 2011, 31, 3444–3452.
  • Swasdisevi, T.; Devahastin, S.; Thanasookprasert, S.; Soponronnarit, S. Comparative Evaluation of Hot-Air and Superheated-Steam Impinging Stream Drying as Novel Alternatives for Paddy Drying. Dry. Technol. 2013, 31, 717–725. DOI: 10.1080/07373937.2013.773908.
  • Gauvin, W. H. A Novel Approach to Spray Drying Using Plasmas of Water Vapour. Can. J. Chem. Eng. 1981, 59, 697–704.
  • Frydman, A.; Vasseur, J.; Ducept, F.; Sionneau, M.; Moureh, J. Simulation of Spray Drying in Superheated Steam Using Computational Fluid Dynamics. Dry. Technol. 1999, 17, 1313–1326. DOI: 10.1080/07373939908917617.
  • Ducept, F.; Sionneau, M.; Vasseur, J. Superheated Steam Dryer: Simulations and Experiments on Product Drying. Chem. Eng. J. 2002, 86, 75–83. DOI: 10.1016/S1385-8947. (01)00275-3.
  • Fuengfoo, M.; Devahastin, S.; Niumnuy, C.; Soponronnarit, S. 2018 Preliminary Study of Superheated Steam Spray Drying: A Case Study with Maltodextrin. Presented at the 21st International Drying Symposium Valencia, Spain, Sept 11–14, 2018; pp 1147–1154. DOI: 10.4995/IDS2018.2018.7881.
  • Robert, O. Steam Stream Drying. Dry. Technol. 1985, 3, 501–515. DOI: 10.1080/07373938508916293.
  • Berghel, J. The Effect of Using a Heating Tube in an Existing Spouted Bed Superheated Steam Dryer. Dry. Technol. 2011, 29, 183–188. DOI: 10.1080/07373937.2010.483030.
  • Deventer, H. C. V. Feasibility of Energy Efficient Steam Drying of Paper and Textile Including Process Integration. Appl. Therm. Eng. 1997, 17, 1035–1041.
  • Liu, Y.; Aziz, M.; Kansha, Y.; Tsutsumi, A. A Novel Exergy Recuperative Drying Module and Its Application for Energy Saving Drying with Superheated Steam. Chem. Eng. Sci. 2013, 100, 392–401.
  • Fushimi, C.; Fukui, K. Simplification and Energy Saving of Drying Process Based on Self-Heat Recuperation Technology. Dry. Technol. 2014, 32, 667–678. DOI: 10.1080/07373937.2013.851085.
  • Chryat, Y.; Romdhana, H.; Esteban-Decloux, M. Reducing Energy Requirement for Drying of Beet-Pulp: Simulation of Energy Integration between Superheated Steam and Air Drying Systems. Dry. Technol. 2017, 35, 838–848. DOI: 10.1080/07373937.2016.1220952.
  • Park, Y.; Han, Y.; Park, J.-H.; Chang, Y.-S.; Yang, S.-Y.; Chung, H.; Yeo, H. Evaluation of the Energy Efficiency of Combined Drying and Heat Treatment by Superheated Steam. Dry. Technol. 2017, 35, 1460–1467. DOI: 10.1080/07373937.2016.1254651.
  • Jia, Z.; Liu, B.; Li, C.; Fang, T.; Chen, J. Newly Designed Superheated Steam Dryer Bearing Heat Recovery Unit: Analysis of Energy Efficiency and Kinetics of Kelp Drying. Dry. Technol. 2018, 36, 1619–1630. DOI: 10.1080/07373937.2017.1420080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.