248
Views
5
CrossRef citations to date
0
Altmetric
Articles

Vacuum drying of food materials modeled and explored using the reaction engineering approach (REA) framework

&
Pages 2519-2527 | Received 24 Nov 2020, Accepted 04 Feb 2021, Published online: 10 Mar 2021

References

  • Bondaruk, J.; Markowski, M.; Błaszczak, W. Effect of Drying Conditions on the Quality of Vacuum-Microwave Dried Potato Cubes. J. Food Eng. 2007, 81, 306–312. DOI: 10.1016/j.jfoodeng.2006.10.028.
  • Punathil, M.; Basak, T. Microwave Processing of Frozen and Packaged Food Materials: Experimental. In Reference Module in Food Science, 2016. DOI: 10.1016/B978-0-08-100596-5.21009-3.
  • Wu, L.; Orikasa, T.; Ogawa, Y.; Tagawa, A. Vacuum Drying Characteristics of Eggplant. J. Food Eng. 2007, 83, 422–429. DOI: 10.1016/j.jfoodeng.2007.03.030.
  • Alibas, I. Energy Consumption and Color Characteristics of Nettle Leaves during Microwave, Vacuum Drying and Convective Drying. Biosyst. Eng. 2007, 96, 495–502. DOI: 10.1016/j.biosystemseng.2006.12.011.
  • He, Z.; Yang, F.; Yi, S.; Gao, J. Effect of Ultrasound Pretreatment on Vacuum Drying of Chinese Catalpa Wood. Drying Technol. 2012, 30, 1750–1755. DOI: 10.1080/07373937.2012.713420.
  • Liu, Z.; Zhang, M.; Fang, Z.; Bhandari, B.; Yang, Z. Dehydration of Asparagus Cookies by Combined Vacuum Infrared Radiation and Pulse-Spouted Microwave Vacuum Drying. Drying Technol. 2017, 35, 1291–1301. DOI: 10.1080/07373937.2017.1330755.
  • Zielinska, M.; Markowski, M.; Zielinska, D. The Effect of Freezing on the Hot Air and Microwave Vacuum Drying Kinetics and Texture of Whole Cranberries. Drying Technol. 2019, 37, 1714–1730. DOI: 10.1080/07373937.2018.1543317.
  • Han, Q. H.; Yin, L. J.; Li, S. J.; Yang, B. N.; Ma, J. W. Optimization of Process Parameters for Microwave Vacuum Drying of Apple Slices Using Response Surface Method. Drying Technol. 2010, 28, 523–532. DOI: 10.1080/07373931003618790.
  • Sunjka, P. S.; Raghavan, G. S. V.; Rennie, T. J. Convective and Microwave-Vacuum Drying of Cranberries: A Comparative Study. Paper No. 475, PRES'03 Conference, Hamilton, ON, 2004.
  • Raghavan, G. S. V.; Rennie, T. J.; Sunjka, P. S.; Orsat, V.; Phaphuangwittayakul, W.; Terdtoon, P. Overview of New Techniques for Drying of Biological Materials with Emphasis on Energy Aspects. Braz. J. Chem. Eng. 2005, 22, 195–201. DOI: 10.1590/S0104-66322005000200005.
  • Jena, S.; Das, H. Modelling for Vacuum Drying Characteristics of Coconut Presscake. J. Food Eng. 2007, 79, 92–99. DOI: 10.1016/j.jfoodeng.2006.01.032.
  • Zecchi, B.; Clavijo, L.; Martínez Garreiro, J.; Gerla, P. Modeling and Minimizing Process Time of Combined Convective and Vacuum Drying of Mushrooms and Parsley. J. Food Eng. 2011, 104, 49–55. DOI: 10.1016/j.jfoodeng.2010.11.026.
  • Jaya, S.; Das, H. A. Vacuum Drying Model for Mango Pulp. Drying Technol. 2003, 21, 1215–1234. DOI: 10.1081/DRT-120023177.
  • Torres, S. S.; Jomaa, W.; Puiggali, J. R.; Avramidis, S. Multiphysics Modeling of Vacuum Drying of Wood. Appl. Math. Model. 2011, 35, 5006–5016. DOI: 10.1016/j.apm.2011.04.011.
  • Chen, X. D.; Putranto, A. 2013. Modeling Drying Processes: A Reaction Engineering Approach. Cambridge University Press: Cambridge (ISBN: 9781107012103)
  • Putranto, A.; Chen, X. D.; Webley, P. A. Infrared and Convective Drying of Thin Layer of Polyvinyl Alcohol (PVA)/Glycerol/Water mixture – The Reaction Engineering Approach (REA). Chem. Eng. Process 2010, 49, 348–357. DOI: 10.1016/j.cep.2010.03.010.
  • Putranto, A.; Chen, X. D.; Xiao, Z.; Webley, P. A. Simple, Accurate and Robust Modeling of Various Systems of Drying of Foods and Biomaterials: A Demonstration of the Feasibility of the Reaction Engineering Approach (REA). Drying Technol. 2011, 29, 1519–1528. DOI: 10.1080/07373937.2011.580407.
  • Putranto, A.; Chen, X. D. Microwave Drying Modeled Using the Reaction Engineering Approach (REA). Drying Technol. 2016, 34, 1654–1663. DOI: 10.1080/07373937.2016.1166439.
  • Adiletta, G.; Iannone, G.; Russo, P.; Patimo, G.; De Pasquale, S.; Di Matteo, M. Moisture Migration by Magnetic Resonance Imaging during Eggplant Drying: preliminary Study. Int. J. Food Sci. Technol. 2014, 49, 2602–2609. DOI: 10.1111/ijfs.12591.
  • Putranto, A.; Chen, X. D. A Successful Comparison between a Non-Invasive Measurement of Local Profiles during Drying of a Highly Shrinkable Material (Eggplant) and the Spatial Reaction Engineering Approach. J. Food Eng. 2018, 235, 23–31. DOI: 10.1016/j.jfoodeng.2018.04.024.
  • Vesselman, S. G.; Uttenkov, N. I. Investigation of the Effect of the Degree of Vacuum on the Convective Heat Transfer Coefficient. High Temp. Sci. 1977, 14, 992–994.
  • Tanchuk, V.; Grigoriev, S.; Krylov, V.; Balunov, B. Experimental Study of Heat Transfer Coefficients in ITER Vacuum Vessel Cooling Channels. Fusion Eng. Des. 2002, 61–62, 807–816. DOI: 10.1016/S0920-3796(02)00288-0.
  • Yang, G.; Du, L.; Du, J.; Li, B.; Fu, X. Convection Heat Transfer Model and Verification for the Vacuum Chamber during Charge and Discharge Processes. Vacuum 2017, 139, 67–76. DOI: 10.1016/j.vacuum.2017.02.016.
  • Churchill, S. W.; Chu, H. H. S. Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder. Int. J. Heat Mass Transf. 1975, 18, 1049–1053. DOI: 10.1016/0017-9310(75)90222-7.
  • Acevedo, C.; Sánchez, E.; Young, M. E. Heat and Mass Transfer Coefficients for Natural Convection in Fruit Packages. J. Food Eng. 2007, 80, 655–661. DOI: 10.1016/j.jfoodeng.2006.07.001.
  • Putranto, A.; Chen, X. D. Reaction Engineering Approach Modeling of Intensified Drying of Fruits and Vegetables Using Microwave, Ultrasonic and Infrared-Heating. Drying Technol. 2020, 38, 747–757. DOI: 10.1080/07373937.2019.1708750.
  • Lamb, J. Influence of Water on the Thermal Properties of Foods. Chem. Ind. 1976, 24, 1046–1048.
  • Inprocera, F. P.; DeWitt, S. P.; Bergman, T. L.; Lavine, A. S. 2007. Fundamentals of Heat and Mass Transfer, 6th ed. Wiley: Hoboken, NJ.
  • Llave, Y.; Takemori, K.; Fukuoka, M.; Takemori, T.; Tomita, H.; Sakai, N. Mathematical Modeling of Shrinkage Deformation in Eggplant Undergoing Simultaneous Heat and Mass Transfer during Convection Oven Roasting. J. Food Eng. 2016, 178, 124–136. DOI: 10.1016/j.jfoodeng.2016.01.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.