458
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Energy usage in the manufacture of dairy powders: Advances in conventional processing and disruptive technologies

, , , &
Pages 1595-1613 | Received 17 Feb 2021, Accepted 10 Mar 2021, Published online: 14 Apr 2021

References

  • OECD/FAO. OECD-FAO Agricultural Outlook 2019-2028. https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2019-2028_agr_outlook-2019-en. (accessed Feb 6, 2021).
  • Global Dairy Platform. Sustainable Development Goals SDGS. https://www.globaldairyplatform.com/sustainable-development-goals-sdgs/. (accessed Feb 13, 2021).
  • Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Rosa, W., Ed.; Springer Publishing Company: New York, NY, 2017. DOI: 10.1891/9780826190123.ap02.
  • Schuck, P. Dehydrated Dairy Products: Milk Powder: Types and Manufacture. In Encyclopedia of Dairy Sciences; Fuquay J. W., Ed.; Academic Press: MA, USA; 2011; pp. 108–116. DOI: 10.1016/B978-0-12-374407-4.00121-7.
  • Westergaard, V. Milk Powder Technology: Evaporation and Spray Drying; Niro A/S: Copenhagen, Denmark, 2004.
  • Murphy, E. G.; Roos, Y. H.; Hogan, S. A.; Maher, P. G.; Flynn, C. G.; Fenelon, M. A. Physical Stability of Infant Milk Formula Made with Selectively Hydrolysed Whey Proteins. Int. Dairy J. 2015, 40, 39–46. DOI: 10.1016/j.idairyj.2014.08.012.
  • Murphy, E. G.; Tobin, J. T.; Roos, Y. H.; Fenelon, M. A. A High-Solids Steam Injection Process for the Manufacture of Powdered Infant Milk Formula. Dairy Sci. Technol. 2013, 93, 463–475. DOI: 10.1007/s13594-013-0116-7.
  • Palzer, S.; Dubois, C.; Gianfrancesco, A. Generation of Product Structures during Drying of Food Products. Dry. Technol. 2012, 30, 97–105. DOI: 10.1080/07373937.2011.622060.
  • Gianfrancesco, A.; Palzer, S. Current Trends in Spray Drying Research: Understanding the Development of Particle Stickiness Enables Controlling Agglomeration During Dehydration. https://www.newfoodmagazine.com/article/5048/current-trends-in-spray-drying-research-understanding-the-development-of-particle-stickiness-enables-controlling-agglomeration-during-dehydration/. (accessed Feb 6, 2021).
  • Burke, N. The Dairy Industry: Process, Monitoring, Standards, and Quality | IntechOpen. https://www.intechopen.com/books/descriptive-food-science/the-dairy-industry-process-monitoring-standards-and-quality. (accessed Feb 3, 2021).
  • Flysjö, A. Greenhouse Gas Emissions in Milk and Dairy Product Chains Improving the Carbon Footprint of Dairy Products. PhD Thesis, AARHUS University, Tjele, Denmark, 2012.
  • Moejes, S. N.; Visser, Q.; Bitter, J. H.; van Boxtel, A. J. B. Closed-Loop Spray Drying Solutions for Energy Efficient Powder Production. Innov. Food Sci. Emerg. Technol. 2018, 47, 24–37. DOI: 10.1016/j.ifset.2018.01.005.
  • Ramirez, C. A.; Patel, M.; Blok, K. From Fluid Milk to Milk Powder: Energy Use and Energy Efficiency in the European Dairy Industry. Energy 2006, 31, 1984–2004. DOI: 10.1016/j.energy.2005.10.014.
  • Ladha-Sabur, A.; Bakalis, S.; Fryer, P. J.; Lopez-Quiroga, E. Mapping Energy Consumption in Food Manufacturing. Trends Food Sci. Technol. 2019, 86, 270–280. DOI: 10.1016/j.tifs.2019.02.034.
  • Schuck, P.; Jeantet, R.; Tanguy, G.; Méjean, S.; Gac, A.; Lefebvre, T.; Labussière, E.; Martineau, C. Energy Consumption in the Processing of Dairy and Feed Powders by Evaporation and Drying. Dry. Technol. 2015, 33, 176–184. DOI: 10.1080/07373937.2014.942913.
  • Murphy, E. G.; Fenelon, M. A.; Roos, Y. H.; Hogan, S. A. Decoupling Macronutrient Interactions during Heating of Model Infant Milk Formulas. J. Agric. Food Chem. 2014, 62, 10585–10593. DOI: 10.1021/jf503620r.
  • Sutariya, S. G.; Huppertz, T.; Patel, H. A. Influence of Milk Pre-Heating Conditions on Casein–Whey Protein Interactions and Skim Milk Concentrate Viscosity. Int. Dairy J. 2017, 69, 19–22. DOI: 10.1016/j.idairyj.2017.01.007.
  • Deeth, H. C.; Smithers, G. Heat Treatment of Milk – Overview. IDF Factsheet 001/2018-02 2018. https://www.fil-idf.org/wp-content/uploads/2018/02/Factsheet-001_Heat-treatment-1-2.pdf. (accessed Mar 3, 2021).
  • Stapelfeldt, H.; Nielsen, B. R.; Skibsted, L. H. Effect of Heat Treatment, Water Activity and Storage Temperature on the Oxidative Stability of Whole Milk Powder. Int. Dairy J. 1997, 7, 331–339. https://doi.org/10.1016/S0958-6946. (97)00016-2. DOI: 10.1016/S0958-6946(97)00016-2.
  • Patel, H.; Anema, S.; Holroyd, S.; Singh, H.; Creamer, L. Methods to Determine Denaturation and Aggregation of Proteins in Low-, Medium- and High-Heat Skim Milk Powders. Lait 2007, 87, 251–268. DOI: 10.1051/lait:2007027.
  • Masum, A. K. M.; Huppertz, T.; Chandrapala, J.; Adhikari, B.; Zisu, B. Physicochemical Properties of Spray-Dried Model Infant Milk Formula Powders: Influence of Whey Protein-to-Casein Ratio. Int. Dairy J. 2020, 100, 104565. DOI: 10.1016/j.idairyj.2019.104565.
  • Murphy, K. M.; Ho, Q. T.; Drapala, K. P.; Keena, G. M.; Fenelon, M. A.; O'Mahony, J. A.; McCarthy, N. A. Influence of Protein Standardisation Media and Heat Treatment on Viscosity and Related Physicochemical Properties of Skim Milk Concentrate. Int. Dairy J. 2018, 81, 143–148. DOI: 10.1016/j.idairyj.2018.01.010.
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X. D.; Perrone, I. T.; de Carvalho, A. F.; Fenelon, M.; Kelly, P. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Dry. Technol. 2016, 34, 1773–1790. DOI: 10.1080/07373937.2016.1233114.
  • Písecký, J. Handbook of Milk Powder Manufacture; GEA Niro A/S: Copenhagen, 1997.
  • Cheng, F.; Zhou, X.; Liu, Y. Methods for Improvement of the Thermal Efficiency during Spray Drying. E3S Web Conf. 2018, 53, 01031. DOI: 10.1051/e3sconf/20185301031.
  • Meyer, P.; Hartinger, M.; Sigler, S.; Kulozik, U. Concentration of Milk and Whey by Membrane Technologies in Alternative Cascade Modes. Food Bioprocess. Technol. 2017, 10, 674–686. DOI: 10.1007/s11947-016-1848-1.
  • Chen, G. Q.; Artemi, A.; Lee, J.; Gras, S. L.; Kentish, S. E. A Pilot Scale Study on the Concentration of Milk and Whey by Forward Osmosis. Sep. Purif. Technol. 2019, 215, 652–659. DOI: 10.1016/j.seppur.2019.01.050.
  • Schuck, P.; Le Floch-Fouere, C.; Jeantet, R. Changes in Functional Properties of Milk Protein Powders: Effects of Vacuum Concentration and Drying. Dry. Technol. 2013, 31, 1578–1591. DOI: 10.1080/07373937.2013.816316.
  • Hausmann, A.; Sanciolo, P.; Vasiljevic, T.; Kulozik, U.; Duke, M. Performance Assessment of Membrane Distillation for Skim Milk and Whey Processing. J. Dairy Sci. 2014, 97, 56–71. DOI: 10.3168/jds.2013-7044.
  • Morison, K. R.; Worth, Q. A. G.; O’dea, N. P. Minimum Wetting and Distribution Rates in Falling Film Evaporators. Food Bioprod. Process. 2006, 84, 302–310. DOI: 10.1205/fbp06031.
  • Tanguy, G.; Dolivet, A.; Garnier-Lambrouin, F.; Méjean, S.; Coffey, D.; Birks, T.; Jeantet, R.; Schuck, P. Concentration of Dairy Products Using a Thin Film Spinning Cone Evaporator. J. Food Eng. 2015, 166, 356–363. DOI: 10.1016/j.jfoodeng.2015.07.001.
  • Tanguy, G.; Dolivet, A.; Méjean, S.; Garreau, D.; Talamo, F.; Postet, P.; Jeantet, R.; Schuck, P. Efficient Process for the Production of Permeate Powders. Innov. Food Sci. Emerg. Technol. 2017, 41, 144–149. DOI: 10.1016/j.ifset.2017.02.008.
  • Schuck, P.; Méjean, S.; Dolivet, A.; Beaucher, E.; Famelart, M.-H. Pump Amperage: A New Method for Monitoring Viscosity of Dairy Concentrates before Spray Drying. Lait 2005, 85, 361–367. DOI: 10.1051/lait:2005014.
  • Schuck, P.; Dolivet, A.; Méjean, S.; Jeantet, R. Relative Humidity of Outlet Air: The Key Parameter to Optimize Moisture Content and Water Activity of Dairy Powders. Dairy Sci. Technol. 2008, 88, 45–52. DOI: 10.1051/dst:2007007.
  • Schuck, P.; Mejean, S.; Dolivet, A.; Jeantet, R.; Bhandari, B. Keeping Quality of Dairy Ingredients. Lait 2007, 87, 481–488. DOI: 10.1051/lait:2007011.
  • Niels, G. H..; Jansen, L. A..; van Boxtel, A. J. B. Control and Energy Aspects of Milk Powder Spray-Drying in Relation to Product Quality. In Drying ’85; Toei, R., Mujumdar, A. S., Eds.; Springer: Berlin, Heidelberg, 1985; pp 244–248. DOI: 10.1007/978-3-662-21830-3_30..
  • Moejes, S. N.; van Boxtel, A. J. B. Energy Saving Potential of Emerging Technologies in Milk Powder Production. Trends Food Sci. Technol. 2017, 60, 31–42. DOI: 10.1016/j.tifs.2016.10.023.
  • Chamberland, J.; Benoit, S.; Doyen, A.; Pouliot, Y. Integrating Reverse Osmosis to Reduce Water and Energy Consumption in Dairy Processing: A Predictive Analysis for Cheddar Cheese Manufacturing Plants. J. Water Process Eng. 2020, 38, 101606. DOI: 10.1016/j.jwpe.2020.101606.
  • Depping, V.; Grunow, M.; van Middelaar, C.; Dumpler, J. Integrating Environmental Impact Assessment into New Product Development and Processing-Technology Selection: Milk Concentrates as Substitutes for Milk Powders. J. Clean. Prod. 2017, 149, 1–10. DOI: 10.1016/j.jclepro.2017.02.070.
  • Stefansdottir, B.; Depping, V.; Grunow, M.; Kulozik, U. Impact of Shelf Life on the Trade-off between Economic and Environmental Objectives: A Dairy Case. Int. J. Prod. Econ. 2018, 201, 136–148. DOI: 10.1016/j.ijpe.2018.04.009.
  • Blais, H.; Ho, Q. T.; Murphy, E. G.; Schroën, K.; Tobin, J. T. A Cascade Microfiltration and Reverse Osmosis Approach for Energy Efficient Concentration of Skim Milk. J. Food Eng. 2021, 300, 110511. DOI: 10.1016/j.jfoodeng.2021.110511.
  • Blandin, G.; Ferrari, F.; Lesage, G.; Le-Clech, P.; Heran, M.; Martinez-Llado, X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. Membranes 2020, 10, 284. DOI: 10.3390/membranes10100284.
  • Chen, G. Q.; Gras, S. L.; Kentish, S. E. The Application of Forward Osmosis to Dairy Processing. Sep. Purif. Technol. 2020, 246, 116900. DOI: 10.1016/j.seppur.2020.116900.
  • Aydiner, C.; Sen, U.; Topcu, S.; Ekinci, D.; Altinay, A. D.; Koseoglu-Imer, D. Y.; Keskinler, B. Techno-Economic Viability of Innovative Membrane Systems in Water and Mass Recovery from Dairy Wastewater. J. Membr. Sci. 2014, 458, 66–75. DOI: 10.1016/j.memsci.2014.01.058.
  • Moejes, S. N.; Guzman, M. R.; Hanemaaijer, J. H.; Barrera, K. H.; Feenstra, L.; Boxtel, A.; van, J. B. Membrane Distillation for Milk Concentration; 29th EFFoST international conference - Athens, Greece, 2015. https://library.wur.nl/WebQuery/wurpubs/fulltext/374205 (Accessed 24 March 2021).
  • Winchester, J. Model Based Analysis of the Operation and Control of Falling Film Evaporators. Ph.D. Thesis, Massey University: Palmerston North, New Zealand, 2000.
  • De, J.; Fox, P.; Akkerman, M.; Straatsma, C. J. Energy Reduction by High Dry Matter Concentration and Drying. New Food 2010, 2, 60–63.
  • Carr, A. J.; Southward, C. R.; Creamer, L. K. Protein Hydration and Viscosity of Dairy Fluids. In Advanced Dairy Chemistry – 1 Proteins: Part a/Part B; Fox, P. F., McSweeney, P. L. H., Eds.; Springer US: Boston, MA, 2003; pp 1289–1323. DOI: 10.1007/978-1-4419-8602-3_35.
  • Baldwin, A. J. New, Z. D. R. I.); Baucke, A. G.; Sanderson, W. B. The Effect of Concentrate Viscosity on the Properties of Spray Dried Skim Milk Powder. N. Z. J. Dairy Sci. Technol. N. Z 1980, 15, 289–297.
  • Morison, K. R.; Phelan, J. P.; Bloore, C. G. Viscosity and Non-Newtonian Behaviour of Concentrated Milk and Cream. Int. J. Food Prop. 2013, 16, 882–894. DOI: 10.1080/10942912.2011.573113.
  • Bista, A.; Tobin, J. T.; O’Donnell, C. P.; O’Shea, N. Monitoring Viscosity and Total Solids Content of Milk Protein Concentrate Using an Inline Acoustic Flowmeter at Laboratory Scale. Foods 2020, 9, 1310. DOI: 10.3390/foods9091310.
  • Hogan, S. A.; O'Loughlin, I. B.; Kelly, P. M. Soft Matter Characterisation of Whey Protein Powder Systems. Int. Dairy J. 2016, 52, 1–9. DOI: 10.1016/j.idairyj.2015.07.005.
  • Masum, A. K. M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Production and Characterization of Infant Milk Formula Powders: A Review. Dry. Technol. 2020, 1–21. DOI: 10.1080/07373937.2020.1767645..
  • Bienvenue, A.; Jimenez-Flores, R.; Singh, H. Rheological Properties of Concentrated Skim Milk: Importance of Soluble Minerals in the Changes in Viscosity during Storage. J. Dairy Sci. 2003, 86, 3813–3821. DOI: 10.3168/jds.S0022-0302(03)73988-5.
  • Buggy, A. K.; McManus, J. J.; Brodkorb, A.; Mc Carthy, N.; Fenelon, M. A. Stabilising Effect of Alpha-Lactalbumin on Concentrated Infant Milk Formula Emulsions Heat Treated Pre- or Post-Homogenisation. Dairy Sci. Technol. 2017, 96, 845–859. DOI: 10.1007/s13594-016-0306-1.
  • Crowley, S. V.; Dowling, A. P.; Caldeo, V.; Kelly, A. L.; O'Mahony, J. A. Impact of α-Lactalbumin:β-Lactoglobulin Ratio on the Heat Stability of Model Infant Milk Formula Protein Systems. Food Chem. 2016, 194, 184–190. DOI: 10.1016/j.foodchem.2015.07.077.
  • Rodríguez Arzuaga, M.; Aalaei, K.; Felix da Silva, D.; Barjon, S.; Añón, M. C.; Abraham, A. G.; Ahrné, L. Infant Milk Formulae Processing: Effect of Wet-Mix Total Solids and Heat Treatment Temperature on Rheological, Emulsifying and Nutritional Properties. J. Food Eng. 2021, 290, 110194. DOI: 10.1016/j.jfoodeng.2020.110194.
  • Vignolles, M.-L.; Jeantet, R.; Lopez, C.; Schuck, P. Free Fat, Surface Fat and Dairy Powders: Interactions between Process and Product. Lait 2007, 87, 187–236. DOI: 10.1051/lait:2007010.
  • Mesa, J.; Hinestroza-Córdoba, L.; Barrera, C.; Seguí, L.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020, 25, 3305. DOI: 10.3390/molecules25143305.
  • Mercan, E.; Sert, D.; Akın, N. Effect of High-Pressure Homogenisation on Viscosity, Particle Size and Microbiological Characteristics of Skim and Whole Milk Concentrates. Int. Dairy J. 2018, 87, 93–99. DOI: 10.1016/j.idairyj.2018.07.017.
  • McCarthy, N. A.; Gee, V. L.; O'Mahony, J. A.; Kelly, A. L.; Fenelon, M. A. Optimising Emulsion Stability during Processing of Model Infant Formulae Using Factorial Statistical Design. Int. J. Dairy Technol. 2015, 68, 334–341. DOI: 10.1111/1471-0307.12240.
  • Bodenstab, S. Process for the Preparation of Milk Powder. US6780450B2 August 24, 2004,
  • Walmsley, T. G.; Atkins, M. J.; Walmsley, M. R. W.; Philipp, M.; Peesel, R.-H. Process and Utility Systems Integration and Optimisation for Ultra-Low Energy Milk Powder Production. Energy 2018, 146, 67–81. DOI: 10.1016/j.energy.2017.04.142.
  • Deshpande, V. K.; Walsh, M. K. Effect of Sonication on the Viscosity of Reconstituted Skim Milk Powder and Milk Protein Concentrate as Influenced by Solids Concentration, Temperature and Sonication. Int. Dairy J. 2018, 78, 122–129. DOI: 10.1016/j.idairyj.2017.11.005.
  • Gregersen, S. B.; Wiking, L.; Bertelsen, K. B.; Tangsanthatkun, J.; Pedersen, B.; Poulsen, K. R.; Andersen, U.; Hammershoj, M. Viscosity Reduction in Concentrated Protein Solutions by Hydrodynamic Cavitation. Int. Dairy J. 2019, 97, 1–4. DOI: 10.1016/j.idairyj.2019.04.015.
  • Zisu, B.; Schleyer, M.; Chandrapala, J. Application of Ultrasound to Reduce Viscosity and Control the Rate of Age Thickening of Concentrated Skim Milk. Int. Dairy J. 2013, 31, 41–43. DOI: 10.1016/j.idairyj.2012.04.007.
  • Pathania, S.; Ho, Q. T.; Hogan, S. A.; McCarthy, N.; Tobin, J. T. Applications of Hydrodynamic Cavitation for Instant Rehydration of High Protein Milk Powders. J. Food Eng. 2018, 225, 18–25. DOI: 10.1016/j.jfoodeng.2018.01.005.
  • Marella, C.; Salunke, P.; Biswas, A. C.; Kommineni, A.; Metzger, L. E. Manufacture of Modified Milk Protein Concentrate Utilizing Injection of Carbon Dioxide. J. Dairy Sci. 2015, 98, 3577–3589. DOI: 10.3168/jds.2014-8946.
  • Morison, K. R. Reduction of Fouling in Falling-Film Evaporators by Design. Food Bioprod. Process. 2015, 93, 211–216. DOI: 10.1016/j.fbp.2014.10.009.
  • Silveira, A. Thermodynamic and Hydrodynamic Characterization of the Vacuum Evaporation Process during Concentration of Dairy Products in a Falling Film Evaporator, PhD Thesis, Food and Nutrition. Agrocampus Ouest, Rennes, France, 2015.
  • van Deventer, H.; Houben, R.; Koldeweij, R. New Atomization Nozzle for Spray Drying. Dry. Technol. 2013, 31, 891–897. DOI: 10.1080/07373937.2012.735734.
  • Lachin, K.; Turchiuli, C.; Pistre, V.; Cuvelier, G.; Mezdour, S.; Ducept, F. Dimensional Analysis Modeling of Spraying Operation – Impact of Fluid Properties and Pressure Nozzle Geometric Parameters on the Pressure-Flow Rate Relationship. Chem. Eng. Res. Des. 2020, 163, 36–46. DOI: 10.1016/j.cherd.2020.08.004.
  • Erdmann, P.; Fankhauser, P.; Nydegger, M.; Sanders, D. R.; Stranzinger, M.; Schmied, C. Method of Controlling the Spray Droplet Size of a Spray Nozzle Apparatus for Spray-Drying Applications, Spray Drying Apparatus and Nozzle Therefore; WO2016107795A1, July 7, 2016.
  • Stähle, P.; Schuchmann, H. P.; Gaukel, V. Performance and Efficiency of Pressure-Swirl and Twin-Fluid Nozzles Spraying Food Liquids with Varying Viscosity. J. Food Process Eng. 2017, 40, e12317. DOI: 10.1111/jfpe.12317.
  • Atuonwu, J. C.; Stapley, A. G. F. Reducing Energy Consumption in Spray Drying by Monodisperse Droplet Generation: Modelling and Simulation. In Proceedings of 1st International Conference on Sustainable Energy and Resource Use in Food Chains (Icfes 2017), Including Symposium on Heat Recovery and Efficient Conversion and Utilisation of Waste Heat; Tassou, S. A., Bianchi, G., Eds.; Elsevier Science Bv: Amsterdam, 2017; Vol. 123, pp 235–242DOI: 10.1016/j.egypro.2017.07.251.
  • Wittner, M. O.; Karbstein, H. P.; Gaukel, V. Energy Efficient Spray Drying by Increased Feed Dry Matter Content: Investigations on the Applicability of Air-Core-Liquid-Ring Atomization on Pilot Scale. Dry. Technol. 2020, 38, 1323–1331. DOI: 10.1080/07373937.2019.1635616.
  • Sorensen, P. B.; Jensen, A. B.; Fredsted, S. External Mixing Pressurized Two-Fluid Nozzle and a Spray Drying Method. US20140014276A1, January 16, 2014.
  • Wittner, M.; Karbstein, H.; Gaukel, V. Spray Drying of High Viscous Food Concentrates: Investigations on the Applicability of an Air-Core-Liquid-Ring (ACLR) Nozzle for Liquid Atomization. Presented at IDS’2018 – 21st International Drying Symposium, València, Spain, 11–14 September, 2018. DOI: 10.4995/IDS2018.2018.7289.
  • Snoeren, T. H. M.; Damman, A. J.; Klok, H. J. (Nederlands I. voor Z). The Viscosity of Skim-Milk Concentrate. Netherlands Milk and Dairy J. 1981, 36, 305–316.
  • Velez-Ruiz, J. F.; Barbosa-Canovas, G. V. Flow and Structural Characteristics of Concentrated Milk. J. Texture Stud. 2000, 31, 315–333. DOI: 10.1111/j.1745-4603.2000.tb00293.x.
  • Durand, D.; Bouvier, J.-M.; Maller, G.; Scott, M.; Stevenson, S.; Roberts, S.; Brisset, A. Method and Equipment for the Continuous Production of a Porous Powdered Product, WO/2008/046996, April 24, 2008.
  • Bouvier, J.-M.; Collado, M.; Gardiner, D.; Scott, M.; Schuck, P. Physical and Rehydration Properties of Milk Protein Concentrates: Comparison of Spray-Dried and Extrusion-Porosified Powders. Dairy Sci. Technol. 2013, 93, 387–399. DOI: 10.1007/s13594-012-0100-7.
  • McHugh, T.; Maller, G. Producing Powders with Extrusion Porosification Technology – IFT.org https://www.ift.org/news-and-publications/food-technology-magazine/issues/2019/december/columns/producing-powders-with-extrusion-porosification-technology. (accessed Jan 1, 2021).
  • McSweeney, D. J.; Maidannyk, V.; O'Mahony, J. A.; McCarthy, N. A. Influence of Nitrogen Gas Injection and Agglomeration during Spray Drying on the Physical and Bulk Handling Properties of Milk Protein Concentrate Powders. J. Food Eng. 2021, 293, 110399. DOI: 10.1016/j.jfoodeng.2020.110399.
  • Brisset, A.; Collado, M. Process and Facility for Producing a Powdered Porous Product. EP3247489A1, November 29, 2017.
  • Gianfrancesco, A.; Kockel, T.; Palzer, S. Achieving Food Products Performance by Mastering the Drying Process. International Drying Symposium, Lyon, France, 2014.
  • Paterson, A. H.; Zuo, J. Y.; Bronlund, J. E.; Chatterjee, R. Stickiness Curves of High Fat Dairy Powders Using the Particle Gun. Int. Dairy J. 2007, 17, 998–1005. DOI: 10.1016/j.idairyj.2006.11.001.
  • Camino-Sanchez, F. J.; Lopez-Lopez, H.; Gutierrez-Rodriguez, J. M. The Development and Application of Sticky-Point Models to Spray Drying Processes for the Manufacturing of Nutritional Powder Products and Infant Formulas. J. Food Eng. 2020, 279. 109947. DOI: 10.1016/j.jfoodeng.2020.109947..
  • Petersen, L.; Poulsen, N.; Niemann, H.; Utzen, C.; Jørgensen, J. Industrial Application of Model Predictive Control to a Milk Powder Spray Drying Plant. Presented at 2016 European Control Conference (ECC), Aalborg, Denmark, 2016; pp 1038–1044. DOI: 10.1109/ECC.2016.7810426.
  • Masum, A. K. M.; Chandrapala, J.; Adhikari, B.; Huppertz, T.; Zisu, B. Effect of Lactose-to-Maltodextrin Ratio on Emulsion Stability and Physicochemical Properties of Spray-Dried Infant Milk Formula Powders. J. Food Eng. 2019, 254, 34–41. DOI: 10.1016/j.jfoodeng.2019.02.023.
  • Keeping the powder dry. Dairy Industries International November 2018 https://www.dairyindustries.com/issue/31133/november-2018/. (accessed Feb 11, 2021).
  • Madeira, A. N.; Camargo, J. R. Economical Analysis of the Spray Drying Process by Pre-Dehumidification of the Inlet Air. Presented at the 8th Latin-American Congress on Electricity Generation and Transmission, CLAGTEE, Ubatuba, Brazil 2009.
  • Dessica. Case study Nutribio https://www.dessica-dryair.com/wp-content/uploads/2020/05/CASE-STUDY-US-Nutribio_DESSiCA-DryAir.pdf. (accessed Feb 13, 2021).
  • Masters, K. Designing Fluid Bed and Spray Dryers for Low Energy Consumption. Dry. Technol. 1983, 2, 521–549. DOI: 10.1080/07373938408959853.
  • Atkins, M. J.; Walmsley, M. R. W.; Neale, J. R. Integrating Heat Recovery from Milk Powder Spray Dryer Exhausts in the Dairy Industry. Appl. Therm. Eng. 2011, 31, 2101–2106. DOI: 10.1016/j.applthermaleng.2011.03.006.
  • Golman, B.; Julklang, W. Analysis of Heat Recovery from a Spray Dryer by Recirculation of Exhaust Air. Energy Convers. Manag. 2014, 88, 641–649. DOI: 10.1016/j.enconman.2014.09.012.
  • Walmsley, T. G.; Walmsley, M. R. W.; Atkins, M. J.; Neale, J. R.; Tarighaleslami, A. H. Thermo-Economic Optimisation of Industrial Milk Spray Dryer Exhaust to Inlet Air Heat Recovery. Energy 2015, 90, 95–104. DOI: 10.1016/j.energy.2015.03.102.
  • Walmsley, T. G.; Walmsley, M. R. W.; Atkins, M. J.; Neale, J. R. Improving Energy Recovery in Milk Powder Production through Soft Data Optimisation. Appl. Therm. Eng. 2013, 61, 80–87. DOI: 10.1016/j.applthermaleng.2013.01.051.
  • Kockel, T. Heat Recovery from Spray Dryer Exhaust Air: An Example from an Infant Formula Factory Installation. Dry. Technol. 2019, 37, 623–631. DOI: 10.1080/07373937.2019.1591741.
  • Písecký, J. Spray Drying in the Cheese Industry. Int. Dairy J. 2005, 15, 531–536. DOI: 10.1016/j.idairyj.2004.11.010.
  • Qiu, J.; Boom, R. M.; Schutyser, M. A. I. Agitated Thin-Film Drying of Foods. Dry. Technol. 2019, 37, 735–744. DOI: 10.1080/07373937.2018.1458037.
  • Trinh, B.; Trinh, K. T.; Haisman, D. Effect of Total Solids Content and Temperature on the Rheological Behaviour of Reconstituted Whole Milk Concentrates. J. Dairy Res. 2007, 74, 116–123. DOI: 10.1017/S0022029906002287.
  • Bennamoun, L.; Arlabosse, P.; Léonard, A. Review on Fundamental Aspect of Application of Drying Process to Wastewater Sludge. Renew. Sustain. Energy Rev. 2013, 28, 29–43. DOI: 10.1016/j.rser.2013.07.043.
  • Beetz, C. P.; Corbett, R.; Salem, D. Methods and Apparatus for Low Heat Spray Drying. US8939388B1, January 27, 2015.
  • Beetz, C. P.; Beetz, J. A. Ultrahigh Efficiency Spray Drying Apparatus and Process. US10252181B2, April 9, 2019.
  • Li, K.; Woo, M. W.; Patel, H.; Metzger, L.; Selomulya, C. Improvement of Rheological and Functional Properties of Milk Protein Concentrate by Hydrodynamic Cavitation. J. Food Eng. 2018, 221, 106–113. DOI: 10.1016/j.jfoodeng.2017.10.005.
  • SPX Flow Technology. Cavitation Technology for Dairy Powder Processing https://www.spxflow.com/assets/pdf/APV_Cavitation_Technology_Dairy_Powder_14018_01_05_2015_GB.pdf. (accessed Feb 16, 2021).
  • Joyce, A. M.; Brodkorb, A.; Kelly, A. L.; O’Mahony, J. A. Separation of the Effects of Denaturation and Aggregation on Whey-Casein Protein Interactions during the Manufacture of a Model Infant Formula. Dairy Sci. Technol. 2017, 96, 787–806. DOI: 10.1007/s13594-016-0303-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.